3.2.49 \(\int \frac {1}{(a+b \text {sech}(c+d x))^{3/2}} \, dx\) [149]

3.2.49.1 Optimal result
3.2.49.2 Mathematica [F]
3.2.49.3 Rubi [A] (verified)
3.2.49.4 Maple [F]
3.2.49.5 Fricas [F]
3.2.49.6 Sympy [F]
3.2.49.7 Maxima [F]
3.2.49.8 Giac [F]
3.2.49.9 Mupad [F(-1)]

3.2.49.1 Optimal result

Integrand size = 14, antiderivative size = 347 \[ \int \frac {1}{(a+b \text {sech}(c+d x))^{3/2}} \, dx=-\frac {2 \coth (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (1+\text {sech}(c+d x))}{a-b}}}{a \sqrt {a+b} d}+\frac {2 \coth (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (1+\text {sech}(c+d x))}{a-b}}}{a \sqrt {a+b} d}+\frac {2 \sqrt {a+b} \coth (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (1+\text {sech}(c+d x))}{a-b}}}{a^2 d}+\frac {2 b^2 \tanh (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \text {sech}(c+d x)}} \]

output
-2*coth(d*x+c)*EllipticE((a+b*sech(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b)) 
^(1/2))*(b*(1-sech(d*x+c))/(a+b))^(1/2)*(-b*(1+sech(d*x+c))/(a-b))^(1/2)/a 
/d/(a+b)^(1/2)+2*coth(d*x+c)*EllipticF((a+b*sech(d*x+c))^(1/2)/(a+b)^(1/2) 
,((a+b)/(a-b))^(1/2))*(b*(1-sech(d*x+c))/(a+b))^(1/2)*(-b*(1+sech(d*x+c))/ 
(a-b))^(1/2)/a/d/(a+b)^(1/2)+2*coth(d*x+c)*EllipticPi((a+b*sech(d*x+c))^(1 
/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sech(d*x+c) 
)/(a+b))^(1/2)*(-b*(1+sech(d*x+c))/(a-b))^(1/2)/a^2/d+2*b^2*tanh(d*x+c)/a/ 
(a^2-b^2)/d/(a+b*sech(d*x+c))^(1/2)
 
3.2.49.2 Mathematica [F]

\[ \int \frac {1}{(a+b \text {sech}(c+d x))^{3/2}} \, dx=\int \frac {1}{(a+b \text {sech}(c+d x))^{3/2}} \, dx \]

input
Integrate[(a + b*Sech[c + d*x])^(-3/2),x]
 
output
Integrate[(a + b*Sech[c + d*x])^(-3/2), x]
 
3.2.49.3 Rubi [A] (verified)

Time = 1.34 (sec) , antiderivative size = 376, normalized size of antiderivative = 1.08, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.786, Rules used = {3042, 4272, 27, 3042, 4546, 3042, 4409, 3042, 4271, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a+b \text {sech}(c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\left (a+b \csc \left (i c+i d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4272

\(\displaystyle \frac {2 b^2 \tanh (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \text {sech}(c+d x)}}-\frac {2 \int -\frac {a^2-b \text {sech}(c+d x) a-b^2-b^2 \text {sech}^2(c+d x)}{2 \sqrt {a+b \text {sech}(c+d x)}}dx}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a^2-b \text {sech}(c+d x) a-b^2-b^2 \text {sech}^2(c+d x)}{\sqrt {a+b \text {sech}(c+d x)}}dx}{a \left (a^2-b^2\right )}+\frac {2 b^2 \tanh (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \text {sech}(c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 b^2 \tanh (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \text {sech}(c+d x)}}+\frac {\int \frac {a^2-b \csc \left (i c+i d x+\frac {\pi }{2}\right ) a-b^2-b^2 \csc \left (i c+i d x+\frac {\pi }{2}\right )^2}{\sqrt {a+b \csc \left (i c+i d x+\frac {\pi }{2}\right )}}dx}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4546

\(\displaystyle \frac {\int \frac {a^2-b^2+\left (b^2-a b\right ) \text {sech}(c+d x)}{\sqrt {a+b \text {sech}(c+d x)}}dx-b^2 \int \frac {\text {sech}(c+d x) (\text {sech}(c+d x)+1)}{\sqrt {a+b \text {sech}(c+d x)}}dx}{a \left (a^2-b^2\right )}+\frac {2 b^2 \tanh (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \text {sech}(c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 b^2 \tanh (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \text {sech}(c+d x)}}+\frac {\int \frac {a^2-b^2+\left (b^2-a b\right ) \csc \left (i c+i d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (i c+i d x+\frac {\pi }{2}\right )}}dx-b^2 \int \frac {\csc \left (i c+i d x+\frac {\pi }{2}\right ) \left (\csc \left (i c+i d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (i c+i d x+\frac {\pi }{2}\right )}}dx}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4409

\(\displaystyle \frac {2 b^2 \tanh (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \text {sech}(c+d x)}}+\frac {\left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \text {sech}(c+d x)}}dx+b^2 \left (-\int \frac {\csc \left (i c+i d x+\frac {\pi }{2}\right ) \left (\csc \left (i c+i d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (i c+i d x+\frac {\pi }{2}\right )}}dx\right )-b (a-b) \int \frac {\text {sech}(c+d x)}{\sqrt {a+b \text {sech}(c+d x)}}dx}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 b^2 \tanh (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \text {sech}(c+d x)}}+\frac {\left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \csc \left (i c+i d x+\frac {\pi }{2}\right )}}dx+b^2 \left (-\int \frac {\csc \left (i c+i d x+\frac {\pi }{2}\right ) \left (\csc \left (i c+i d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (i c+i d x+\frac {\pi }{2}\right )}}dx\right )-b (a-b) \int \frac {\csc \left (i c+i d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (i c+i d x+\frac {\pi }{2}\right )}}dx}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4271

\(\displaystyle \frac {2 b^2 \tanh (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \text {sech}(c+d x)}}+\frac {b^2 \left (-\int \frac {\csc \left (i c+i d x+\frac {\pi }{2}\right ) \left (\csc \left (i c+i d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (i c+i d x+\frac {\pi }{2}\right )}}dx\right )-b (a-b) \int \frac {\csc \left (i c+i d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (i c+i d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sqrt {a+b} \left (a^2-b^2\right ) \coth (c+d x) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (\text {sech}(c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4319

\(\displaystyle \frac {2 b^2 \tanh (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \text {sech}(c+d x)}}+\frac {b^2 \left (-\int \frac {\csc \left (i c+i d x+\frac {\pi }{2}\right ) \left (\csc \left (i c+i d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (i c+i d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 \sqrt {a+b} \left (a^2-b^2\right ) \coth (c+d x) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (\text {sech}(c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}+\frac {2 (a-b) \sqrt {a+b} \coth (c+d x) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (\text {sech}(c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {\frac {2 \sqrt {a+b} \left (a^2-b^2\right ) \coth (c+d x) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (\text {sech}(c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}+\frac {2 (a-b) \sqrt {a+b} \coth (c+d x) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (\text {sech}(c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}-\frac {2 (a-b) \sqrt {a+b} \coth (c+d x) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (\text {sech}(c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{d}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \tanh (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \text {sech}(c+d x)}}\)

input
Int[(a + b*Sech[c + d*x])^(-3/2),x]
 
output
((-2*(a - b)*Sqrt[a + b]*Coth[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sech[c 
+ d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sech[c + d*x]))/(a + b 
)]*Sqrt[-((b*(1 + Sech[c + d*x]))/(a - b))])/d + (2*(a - b)*Sqrt[a + b]*Co 
th[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sech[c + d*x]]/Sqrt[a + b]], (a + 
b)/(a - b)]*Sqrt[(b*(1 - Sech[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sech[c + 
d*x]))/(a - b))])/d + (2*Sqrt[a + b]*(a^2 - b^2)*Coth[c + d*x]*EllipticPi[ 
(a + b)/a, ArcSin[Sqrt[a + b*Sech[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)] 
*Sqrt[(b*(1 - Sech[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sech[c + d*x]))/(a - 
 b))])/(a*d))/(a*(a^2 - b^2)) + (2*b^2*Tanh[c + d*x])/(a*(a^2 - b^2)*d*Sqr 
t[a + b*Sech[c + d*x]])
 

3.2.49.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4271
Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a 
 + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b) 
*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[ 
c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && 
NeQ[a^2 - b^2, 0]
 

rule 4272
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[b^2*Cot[ 
c + d*x]*((a + b*Csc[c + d*x])^(n + 1)/(a*d*(n + 1)*(a^2 - b^2))), x] + Sim 
p[1/(a*(n + 1)*(a^2 - b^2))   Int[(a + b*Csc[c + d*x])^(n + 1)*Simp[(a^2 - 
b^2)*(n + 1) - a*b*(n + 1)*Csc[c + d*x] + b^2*(n + 2)*Csc[c + d*x]^2, x], x 
], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && Integ 
erQ[2*n]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4409
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_ 
.) + (a_)], x_Symbol] :> Simp[c   Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] + 
Simp[d   Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, 
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4546
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Int[(A + (B - C 
)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Simp[C   Int[Csc[e + f*x]*(( 
1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A 
, B, C}, x] && NeQ[a^2 - b^2, 0]
 
3.2.49.4 Maple [F]

\[\int \frac {1}{\left (a +b \,\operatorname {sech}\left (d x +c \right )\right )^{\frac {3}{2}}}d x\]

input
int(1/(a+b*sech(d*x+c))^(3/2),x)
 
output
int(1/(a+b*sech(d*x+c))^(3/2),x)
 
3.2.49.5 Fricas [F]

\[ \int \frac {1}{(a+b \text {sech}(c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \operatorname {sech}\left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(1/(a+b*sech(d*x+c))^(3/2),x, algorithm="fricas")
 
output
integral(sqrt(b*sech(d*x + c) + a)/(b^2*sech(d*x + c)^2 + 2*a*b*sech(d*x + 
 c) + a^2), x)
 
3.2.49.6 Sympy [F]

\[ \int \frac {1}{(a+b \text {sech}(c+d x))^{3/2}} \, dx=\int \frac {1}{\left (a + b \operatorname {sech}{\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(1/(a+b*sech(d*x+c))**(3/2),x)
 
output
Integral((a + b*sech(c + d*x))**(-3/2), x)
 
3.2.49.7 Maxima [F]

\[ \int \frac {1}{(a+b \text {sech}(c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \operatorname {sech}\left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(1/(a+b*sech(d*x+c))^(3/2),x, algorithm="maxima")
 
output
integrate((b*sech(d*x + c) + a)^(-3/2), x)
 
3.2.49.8 Giac [F]

\[ \int \frac {1}{(a+b \text {sech}(c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \operatorname {sech}\left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(1/(a+b*sech(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate((b*sech(d*x + c) + a)^(-3/2), x)
 
3.2.49.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \text {sech}(c+d x))^{3/2}} \, dx=\int \frac {1}{{\left (a+\frac {b}{\mathrm {cosh}\left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

input
int(1/(a + b/cosh(c + d*x))^(3/2),x)
 
output
int(1/(a + b/cosh(c + d*x))^(3/2), x)