3.1.28 \(\int \frac {1}{\sqrt {\text {sech}^2(a+b x)}} \, dx\) [28]

3.1.28.1 Optimal result
3.1.28.2 Mathematica [A] (verified)
3.1.28.3 Rubi [A] (verified)
3.1.28.4 Maple [B] (verified)
3.1.28.5 Fricas [A] (verification not implemented)
3.1.28.6 Sympy [A] (verification not implemented)
3.1.28.7 Maxima [A] (verification not implemented)
3.1.28.8 Giac [A] (verification not implemented)
3.1.28.9 Mupad [B] (verification not implemented)

3.1.28.1 Optimal result

Integrand size = 12, antiderivative size = 22 \[ \int \frac {1}{\sqrt {\text {sech}^2(a+b x)}} \, dx=\frac {\tanh (a+b x)}{b \sqrt {\text {sech}^2(a+b x)}} \]

output
tanh(b*x+a)/b/(sech(b*x+a)^2)^(1/2)
 
3.1.28.2 Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 22, normalized size of antiderivative = 1.00 \[ \int \frac {1}{\sqrt {\text {sech}^2(a+b x)}} \, dx=\frac {\tanh (a+b x)}{b \sqrt {\text {sech}^2(a+b x)}} \]

input
Integrate[1/Sqrt[Sech[a + b*x]^2],x]
 
output
Tanh[a + b*x]/(b*Sqrt[Sech[a + b*x]^2])
 
3.1.28.3 Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.18, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3042, 4610, 208}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {\text {sech}^2(a+b x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {\sec (i a+i b x)^2}}dx\)

\(\Big \downarrow \) 4610

\(\displaystyle \frac {\int \frac {1}{\left (1-\tanh ^2(a+b x)\right )^{3/2}}d\tanh (a+b x)}{b}\)

\(\Big \downarrow \) 208

\(\displaystyle \frac {\tanh (a+b x)}{b \sqrt {1-\tanh ^2(a+b x)}}\)

input
Int[1/Sqrt[Sech[a + b*x]^2],x]
 
output
Tanh[a + b*x]/(b*Sqrt[1 - Tanh[a + b*x]^2])
 

3.1.28.3.1 Defintions of rubi rules used

rule 208
Int[((a_) + (b_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[x/(a*Sqrt[a + b*x^2]), 
x] /; FreeQ[{a, b}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4610
Int[((b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff = FreeFac 
tors[Tan[e + f*x], x]}, Simp[b*(ff/f)   Subst[Int[(b + b*ff^2*x^2)^(p - 1), 
 x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{b, e, f, p}, x] &&  !IntegerQ[p]
 
3.1.28.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(96\) vs. \(2(20)=40\).

Time = 0.46 (sec) , antiderivative size = 97, normalized size of antiderivative = 4.41

method result size
risch \(\frac {{\mathrm e}^{2 b x +2 a}}{2 b \left (1+{\mathrm e}^{2 b x +2 a}\right ) \sqrt {\frac {{\mathrm e}^{2 b x +2 a}}{\left (1+{\mathrm e}^{2 b x +2 a}\right )^{2}}}}-\frac {1}{2 b \left (1+{\mathrm e}^{2 b x +2 a}\right ) \sqrt {\frac {{\mathrm e}^{2 b x +2 a}}{\left (1+{\mathrm e}^{2 b x +2 a}\right )^{2}}}}\) \(97\)

input
int(1/(sech(b*x+a)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/2/b/(1+exp(2*b*x+2*a))/(1/(1+exp(2*b*x+2*a))^2*exp(2*b*x+2*a))^(1/2)*exp 
(2*b*x+2*a)-1/2/b/(1+exp(2*b*x+2*a))/(1/(1+exp(2*b*x+2*a))^2*exp(2*b*x+2*a 
))^(1/2)
 
3.1.28.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 10, normalized size of antiderivative = 0.45 \[ \int \frac {1}{\sqrt {\text {sech}^2(a+b x)}} \, dx=\frac {\sinh \left (b x + a\right )}{b} \]

input
integrate(1/(sech(b*x+a)^2)^(1/2),x, algorithm="fricas")
 
output
sinh(b*x + a)/b
 
3.1.28.6 Sympy [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.32 \[ \int \frac {1}{\sqrt {\text {sech}^2(a+b x)}} \, dx=\begin {cases} \frac {\tanh {\left (a + b x \right )}}{b \sqrt {\operatorname {sech}^{2}{\left (a + b x \right )}}} & \text {for}\: b \neq 0 \\\frac {x}{\sqrt {\operatorname {sech}^{2}{\left (a \right )}}} & \text {otherwise} \end {cases} \]

input
integrate(1/(sech(b*x+a)**2)**(1/2),x)
 
output
Piecewise((tanh(a + b*x)/(b*sqrt(sech(a + b*x)**2)), Ne(b, 0)), (x/sqrt(se 
ch(a)**2), True))
 
3.1.28.7 Maxima [A] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.18 \[ \int \frac {1}{\sqrt {\text {sech}^2(a+b x)}} \, dx=\frac {e^{\left (b x + a\right )}}{2 \, b} - \frac {e^{\left (-b x - a\right )}}{2 \, b} \]

input
integrate(1/(sech(b*x+a)^2)^(1/2),x, algorithm="maxima")
 
output
1/2*e^(b*x + a)/b - 1/2*e^(-b*x - a)/b
 
3.1.28.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.05 \[ \int \frac {1}{\sqrt {\text {sech}^2(a+b x)}} \, dx=\frac {e^{\left (b x + a\right )} - e^{\left (-b x - a\right )}}{2 \, b} \]

input
integrate(1/(sech(b*x+a)^2)^(1/2),x, algorithm="giac")
 
output
1/2*(e^(b*x + a) - e^(-b*x - a))/b
 
3.1.28.9 Mupad [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 53, normalized size of antiderivative = 2.41 \[ \int \frac {1}{\sqrt {\text {sech}^2(a+b x)}} \, dx=\frac {{\mathrm {e}}^{-2\,a-2\,b\,x}\,\left ({\mathrm {e}}^{4\,a+4\,b\,x}-1\right )\,\sqrt {\frac {4\,{\mathrm {e}}^{2\,a+2\,b\,x}}{{\left ({\mathrm {e}}^{2\,a+2\,b\,x}+1\right )}^2}}}{4\,b} \]

input
int(1/(1/cosh(a + b*x)^2)^(1/2),x)
 
output
(exp(- 2*a - 2*b*x)*(exp(4*a + 4*b*x) - 1)*((4*exp(2*a + 2*b*x))/(exp(2*a 
+ 2*b*x) + 1)^2)^(1/2))/(4*b)