3.6.78 \(\int \frac {a+b \text {sech}^2(x)}{c+d \cosh (x)} \, dx\) [578]

3.6.78.1 Optimal result
3.6.78.2 Mathematica [A] (verified)
3.6.78.3 Rubi [A] (verified)
3.6.78.4 Maple [A] (verified)
3.6.78.5 Fricas [B] (verification not implemented)
3.6.78.6 Sympy [F]
3.6.78.7 Maxima [F(-2)]
3.6.78.8 Giac [A] (verification not implemented)
3.6.78.9 Mupad [B] (verification not implemented)

3.6.78.1 Optimal result

Integrand size = 17, antiderivative size = 74 \[ \int \frac {a+b \text {sech}^2(x)}{c+d \cosh (x)} \, dx=-\frac {b d \arctan (\sinh (x))}{c^2}+\frac {2 \left (a c^2+b d^2\right ) \text {arctanh}\left (\frac {\sqrt {c-d} \tanh \left (\frac {x}{2}\right )}{\sqrt {c+d}}\right )}{c^2 \sqrt {c-d} \sqrt {c+d}}+\frac {b \tanh (x)}{c} \]

output
-b*d*arctan(sinh(x))/c^2+2*(a*c^2+b*d^2)*arctanh((c-d)^(1/2)*tanh(1/2*x)/( 
c+d)^(1/2))/c^2/(c-d)^(1/2)/(c+d)^(1/2)+b*tanh(x)/c
 
3.6.78.2 Mathematica [A] (verified)

Time = 0.63 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.72 \[ \int \frac {a+b \text {sech}^2(x)}{c+d \cosh (x)} \, dx=-\frac {2 \left (b+a \cosh ^2(x)\right ) \text {sech}(x) \left (2 \left (b d \sqrt {-c^2+d^2} \arctan \left (\tanh \left (\frac {x}{2}\right )\right )+\left (a c^2+b d^2\right ) \arctan \left (\frac {(c-d) \tanh \left (\frac {x}{2}\right )}{\sqrt {-c^2+d^2}}\right )\right ) \cosh (x)-b c \sqrt {-c^2+d^2} \sinh (x)\right )}{c^2 \sqrt {-c^2+d^2} (a+2 b+a \cosh (2 x))} \]

input
Integrate[(a + b*Sech[x]^2)/(c + d*Cosh[x]),x]
 
output
(-2*(b + a*Cosh[x]^2)*Sech[x]*(2*(b*d*Sqrt[-c^2 + d^2]*ArcTan[Tanh[x/2]] + 
 (a*c^2 + b*d^2)*ArcTan[((c - d)*Tanh[x/2])/Sqrt[-c^2 + d^2]])*Cosh[x] - b 
*c*Sqrt[-c^2 + d^2]*Sinh[x]))/(c^2*Sqrt[-c^2 + d^2]*(a + 2*b + a*Cosh[2*x] 
))
 
3.6.78.3 Rubi [A] (verified)

Time = 0.62 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.07, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.647, Rules used = {3042, 4722, 3042, 3535, 25, 3042, 3480, 3042, 3138, 221, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \text {sech}^2(x)}{c+d \cosh (x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a+b \sec (i x)^2}{c+d \cos (i x)}dx\)

\(\Big \downarrow \) 4722

\(\displaystyle \int \frac {\text {sech}^2(x) \left (a \cosh ^2(x)+b\right )}{c+d \cosh (x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {b+a \sin \left (\frac {\pi }{2}+i x\right )^2}{\sin \left (\frac {\pi }{2}+i x\right )^2 \left (c+d \sin \left (\frac {\pi }{2}+i x\right )\right )}dx\)

\(\Big \downarrow \) 3535

\(\displaystyle \frac {\int -\frac {(b d-a c \cosh (x)) \text {sech}(x)}{c+d \cosh (x)}dx}{c}+\frac {b \tanh (x)}{c}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {b \tanh (x)}{c}-\frac {\int \frac {(b d-a c \cosh (x)) \text {sech}(x)}{c+d \cosh (x)}dx}{c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b \tanh (x)}{c}-\frac {\int \frac {b d-a c \sin \left (i x+\frac {\pi }{2}\right )}{\sin \left (i x+\frac {\pi }{2}\right ) \left (c+d \sin \left (i x+\frac {\pi }{2}\right )\right )}dx}{c}\)

\(\Big \downarrow \) 3480

\(\displaystyle \frac {b \tanh (x)}{c}-\frac {\frac {b d \int \text {sech}(x)dx}{c}-\frac {\left (a c^2+b d^2\right ) \int \frac {1}{c+d \cosh (x)}dx}{c}}{c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b \tanh (x)}{c}-\frac {\frac {b d \int \csc \left (i x+\frac {\pi }{2}\right )dx}{c}-\frac {\left (a c^2+b d^2\right ) \int \frac {1}{c+d \sin \left (i x+\frac {\pi }{2}\right )}dx}{c}}{c}\)

\(\Big \downarrow \) 3138

\(\displaystyle \frac {b \tanh (x)}{c}-\frac {-\frac {2 \left (a c^2+b d^2\right ) \int \frac {1}{-\left ((c-d) \tanh ^2\left (\frac {x}{2}\right )\right )+c+d}d\tanh \left (\frac {x}{2}\right )}{c}+\frac {b d \int \csc \left (i x+\frac {\pi }{2}\right )dx}{c}}{c}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {b \tanh (x)}{c}-\frac {-\frac {2 \left (a c^2+b d^2\right ) \text {arctanh}\left (\frac {\sqrt {c-d} \tanh \left (\frac {x}{2}\right )}{\sqrt {c+d}}\right )}{c \sqrt {c-d} \sqrt {c+d}}+\frac {b d \int \csc \left (i x+\frac {\pi }{2}\right )dx}{c}}{c}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {b \tanh (x)}{c}-\frac {\frac {b d \arctan (\sinh (x))}{c}-\frac {2 \left (a c^2+b d^2\right ) \text {arctanh}\left (\frac {\sqrt {c-d} \tanh \left (\frac {x}{2}\right )}{\sqrt {c+d}}\right )}{c \sqrt {c-d} \sqrt {c+d}}}{c}\)

input
Int[(a + b*Sech[x]^2)/(c + d*Cosh[x]),x]
 
output
-(((b*d*ArcTan[Sinh[x]])/c - (2*(a*c^2 + b*d^2)*ArcTanh[(Sqrt[c - d]*Tanh[ 
x/2])/Sqrt[c + d]])/(c*Sqrt[c - d]*Sqrt[c + d]))/c) + (b*Tanh[x])/c
 

3.6.78.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3138
Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{ 
e = FreeFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + b + 
(a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] 
 && NeQ[a^2 - b^2, 0]
 

rule 3480
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A*b 
- a*B)/(b*c - a*d)   Int[1/(a + b*Sin[e + f*x]), x], x] + Simp[(B*c - A*d)/ 
(b*c - a*d)   Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3535
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(A*b^2 + a^2*C))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*S 
in[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m 
+ 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin 
[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*(m + n 
+ 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d 
*(A*b^2 + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 
- d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) || 
 !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 
 0])))
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 

rule 4722
Int[(u_)*((A_) + (C_.)*sec[(a_.) + (b_.)*(x_)]^2), x_Symbol] :> Int[Activat 
eTrig[u]*((C + A*Cos[a + b*x]^2)/Cos[a + b*x]^2), x] /; FreeQ[{a, b, A, C}, 
 x] && KnownSineIntegrandQ[u, x]
 
3.6.78.4 Maple [A] (verified)

Time = 0.60 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.14

method result size
default \(-\frac {2 \left (-a \,c^{2}-b \,d^{2}\right ) \operatorname {arctanh}\left (\frac {\left (c -d \right ) \tanh \left (\frac {x}{2}\right )}{\sqrt {\left (c +d \right ) \left (c -d \right )}}\right )}{c^{2} \sqrt {\left (c +d \right ) \left (c -d \right )}}-\frac {2 b \left (-\frac {c \tanh \left (\frac {x}{2}\right )}{1+\tanh \left (\frac {x}{2}\right )^{2}}+d \arctan \left (\tanh \left (\frac {x}{2}\right )\right )\right )}{c^{2}}\) \(84\)
risch \(-\frac {2 b}{c \left (1+{\mathrm e}^{2 x}\right )}+\frac {i b d \ln \left ({\mathrm e}^{x}-i\right )}{c^{2}}-\frac {i b d \ln \left ({\mathrm e}^{x}+i\right )}{c^{2}}+\frac {\ln \left ({\mathrm e}^{x}+\frac {\sqrt {c^{2}-d^{2}}\, c -c^{2}+d^{2}}{\sqrt {c^{2}-d^{2}}\, d}\right ) a}{\sqrt {c^{2}-d^{2}}}+\frac {\ln \left ({\mathrm e}^{x}+\frac {\sqrt {c^{2}-d^{2}}\, c -c^{2}+d^{2}}{\sqrt {c^{2}-d^{2}}\, d}\right ) b \,d^{2}}{\sqrt {c^{2}-d^{2}}\, c^{2}}-\frac {\ln \left ({\mathrm e}^{x}+\frac {\sqrt {c^{2}-d^{2}}\, c +c^{2}-d^{2}}{\sqrt {c^{2}-d^{2}}\, d}\right ) a}{\sqrt {c^{2}-d^{2}}}-\frac {\ln \left ({\mathrm e}^{x}+\frac {\sqrt {c^{2}-d^{2}}\, c +c^{2}-d^{2}}{\sqrt {c^{2}-d^{2}}\, d}\right ) b \,d^{2}}{\sqrt {c^{2}-d^{2}}\, c^{2}}\) \(274\)

input
int((a+sech(x)^2*b)/(c+d*cosh(x)),x,method=_RETURNVERBOSE)
 
output
-2*(-a*c^2-b*d^2)/c^2/((c+d)*(c-d))^(1/2)*arctanh((c-d)*tanh(1/2*x)/((c+d) 
*(c-d))^(1/2))-2*b/c^2*(-c*tanh(1/2*x)/(1+tanh(1/2*x)^2)+d*arctan(tanh(1/2 
*x)))
 
3.6.78.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 263 vs. \(2 (64) = 128\).

Time = 0.48 (sec) , antiderivative size = 598, normalized size of antiderivative = 8.08 \[ \int \frac {a+b \text {sech}^2(x)}{c+d \cosh (x)} \, dx=\left [-\frac {2 \, b c^{3} - 2 \, b c d^{2} - {\left (a c^{2} + b d^{2} + {\left (a c^{2} + b d^{2}\right )} \cosh \left (x\right )^{2} + 2 \, {\left (a c^{2} + b d^{2}\right )} \cosh \left (x\right ) \sinh \left (x\right ) + {\left (a c^{2} + b d^{2}\right )} \sinh \left (x\right )^{2}\right )} \sqrt {c^{2} - d^{2}} \log \left (\frac {d^{2} \cosh \left (x\right )^{2} + d^{2} \sinh \left (x\right )^{2} + 2 \, c d \cosh \left (x\right ) + 2 \, c^{2} - d^{2} + 2 \, {\left (d^{2} \cosh \left (x\right ) + c d\right )} \sinh \left (x\right ) - 2 \, \sqrt {c^{2} - d^{2}} {\left (d \cosh \left (x\right ) + d \sinh \left (x\right ) + c\right )}}{d \cosh \left (x\right )^{2} + d \sinh \left (x\right )^{2} + 2 \, c \cosh \left (x\right ) + 2 \, {\left (d \cosh \left (x\right ) + c\right )} \sinh \left (x\right ) + d}\right ) + 2 \, {\left (b c^{2} d - b d^{3} + {\left (b c^{2} d - b d^{3}\right )} \cosh \left (x\right )^{2} + 2 \, {\left (b c^{2} d - b d^{3}\right )} \cosh \left (x\right ) \sinh \left (x\right ) + {\left (b c^{2} d - b d^{3}\right )} \sinh \left (x\right )^{2}\right )} \arctan \left (\cosh \left (x\right ) + \sinh \left (x\right )\right )}{c^{4} - c^{2} d^{2} + {\left (c^{4} - c^{2} d^{2}\right )} \cosh \left (x\right )^{2} + 2 \, {\left (c^{4} - c^{2} d^{2}\right )} \cosh \left (x\right ) \sinh \left (x\right ) + {\left (c^{4} - c^{2} d^{2}\right )} \sinh \left (x\right )^{2}}, -\frac {2 \, {\left (b c^{3} - b c d^{2} + {\left (a c^{2} + b d^{2} + {\left (a c^{2} + b d^{2}\right )} \cosh \left (x\right )^{2} + 2 \, {\left (a c^{2} + b d^{2}\right )} \cosh \left (x\right ) \sinh \left (x\right ) + {\left (a c^{2} + b d^{2}\right )} \sinh \left (x\right )^{2}\right )} \sqrt {-c^{2} + d^{2}} \arctan \left (-\frac {\sqrt {-c^{2} + d^{2}} {\left (d \cosh \left (x\right ) + d \sinh \left (x\right ) + c\right )}}{c^{2} - d^{2}}\right ) + {\left (b c^{2} d - b d^{3} + {\left (b c^{2} d - b d^{3}\right )} \cosh \left (x\right )^{2} + 2 \, {\left (b c^{2} d - b d^{3}\right )} \cosh \left (x\right ) \sinh \left (x\right ) + {\left (b c^{2} d - b d^{3}\right )} \sinh \left (x\right )^{2}\right )} \arctan \left (\cosh \left (x\right ) + \sinh \left (x\right )\right )\right )}}{c^{4} - c^{2} d^{2} + {\left (c^{4} - c^{2} d^{2}\right )} \cosh \left (x\right )^{2} + 2 \, {\left (c^{4} - c^{2} d^{2}\right )} \cosh \left (x\right ) \sinh \left (x\right ) + {\left (c^{4} - c^{2} d^{2}\right )} \sinh \left (x\right )^{2}}\right ] \]

input
integrate((a+b*sech(x)^2)/(c+d*cosh(x)),x, algorithm="fricas")
 
output
[-(2*b*c^3 - 2*b*c*d^2 - (a*c^2 + b*d^2 + (a*c^2 + b*d^2)*cosh(x)^2 + 2*(a 
*c^2 + b*d^2)*cosh(x)*sinh(x) + (a*c^2 + b*d^2)*sinh(x)^2)*sqrt(c^2 - d^2) 
*log((d^2*cosh(x)^2 + d^2*sinh(x)^2 + 2*c*d*cosh(x) + 2*c^2 - d^2 + 2*(d^2 
*cosh(x) + c*d)*sinh(x) - 2*sqrt(c^2 - d^2)*(d*cosh(x) + d*sinh(x) + c))/( 
d*cosh(x)^2 + d*sinh(x)^2 + 2*c*cosh(x) + 2*(d*cosh(x) + c)*sinh(x) + d)) 
+ 2*(b*c^2*d - b*d^3 + (b*c^2*d - b*d^3)*cosh(x)^2 + 2*(b*c^2*d - b*d^3)*c 
osh(x)*sinh(x) + (b*c^2*d - b*d^3)*sinh(x)^2)*arctan(cosh(x) + sinh(x)))/( 
c^4 - c^2*d^2 + (c^4 - c^2*d^2)*cosh(x)^2 + 2*(c^4 - c^2*d^2)*cosh(x)*sinh 
(x) + (c^4 - c^2*d^2)*sinh(x)^2), -2*(b*c^3 - b*c*d^2 + (a*c^2 + b*d^2 + ( 
a*c^2 + b*d^2)*cosh(x)^2 + 2*(a*c^2 + b*d^2)*cosh(x)*sinh(x) + (a*c^2 + b* 
d^2)*sinh(x)^2)*sqrt(-c^2 + d^2)*arctan(-sqrt(-c^2 + d^2)*(d*cosh(x) + d*s 
inh(x) + c)/(c^2 - d^2)) + (b*c^2*d - b*d^3 + (b*c^2*d - b*d^3)*cosh(x)^2 
+ 2*(b*c^2*d - b*d^3)*cosh(x)*sinh(x) + (b*c^2*d - b*d^3)*sinh(x)^2)*arcta 
n(cosh(x) + sinh(x)))/(c^4 - c^2*d^2 + (c^4 - c^2*d^2)*cosh(x)^2 + 2*(c^4 
- c^2*d^2)*cosh(x)*sinh(x) + (c^4 - c^2*d^2)*sinh(x)^2)]
 
3.6.78.6 Sympy [F]

\[ \int \frac {a+b \text {sech}^2(x)}{c+d \cosh (x)} \, dx=\int \frac {a + b \operatorname {sech}^{2}{\left (x \right )}}{c + d \cosh {\left (x \right )}}\, dx \]

input
integrate((a+b*sech(x)**2)/(c+d*cosh(x)),x)
 
output
Integral((a + b*sech(x)**2)/(c + d*cosh(x)), x)
 
3.6.78.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \text {sech}^2(x)}{c+d \cosh (x)} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+b*sech(x)^2)/(c+d*cosh(x)),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*c^2-4*d^2>0)', see `assume?` f 
or more de
 
3.6.78.8 Giac [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.96 \[ \int \frac {a+b \text {sech}^2(x)}{c+d \cosh (x)} \, dx=-\frac {2 \, b d \arctan \left (e^{x}\right )}{c^{2}} + \frac {2 \, {\left (a c^{2} + b d^{2}\right )} \arctan \left (\frac {d e^{x} + c}{\sqrt {-c^{2} + d^{2}}}\right )}{\sqrt {-c^{2} + d^{2}} c^{2}} - \frac {2 \, b}{c {\left (e^{\left (2 \, x\right )} + 1\right )}} \]

input
integrate((a+b*sech(x)^2)/(c+d*cosh(x)),x, algorithm="giac")
 
output
-2*b*d*arctan(e^x)/c^2 + 2*(a*c^2 + b*d^2)*arctan((d*e^x + c)/sqrt(-c^2 + 
d^2))/(sqrt(-c^2 + d^2)*c^2) - 2*b/(c*(e^(2*x) + 1))
 
3.6.78.9 Mupad [B] (verification not implemented)

Time = 8.07 (sec) , antiderivative size = 704, normalized size of antiderivative = 9.51 \[ \int \frac {a+b \text {sech}^2(x)}{c+d \cosh (x)} \, dx=\frac {\ln \left (\frac {\sqrt {\left (c+d\right )\,\left (c-d\right )}\,\left (\frac {32\,\left (a^2\,c^4+2\,a\,b\,c^2\,d^2-4\,{\mathrm {e}}^x\,b^2\,c^3\,d-2\,b^2\,c^2\,d^2+3\,{\mathrm {e}}^x\,b^2\,c\,d^3+2\,b^2\,d^4\right )}{c^2\,d^4}-\frac {\sqrt {\left (c+d\right )\,\left (c-d\right )}\,\left (a\,c^2+b\,d^2\right )\,\left (\frac {32\,c\,\left (2\,b\,d^3+4\,a\,c^3\,{\mathrm {e}}^x+2\,a\,c^2\,d-a\,c\,d^2\,{\mathrm {e}}^x+3\,b\,c\,d^2\,{\mathrm {e}}^x\right )}{d^5}+\frac {32\,\sqrt {\left (c+d\right )\,\left (c-d\right )}\,\left (a\,c^2+b\,d^2\right )\,\left (4\,{\mathrm {e}}^x\,c^3+3\,c^2\,d-3\,{\mathrm {e}}^x\,c\,d^2-2\,d^3\right )}{d^5\,\left (c^2-d^2\right )}\right )}{c^2\,\left (c^2-d^2\right )}\right )\,\left (a\,c^2+b\,d^2\right )}{c^2\,\left (c^2-d^2\right )}-\frac {32\,b\,\left (a\,c^2+b\,d^2\right )\,\left (2\,b\,d+a\,c\,{\mathrm {e}}^x+4\,b\,c\,{\mathrm {e}}^x\right )}{c^3\,d^3}\right )\,\sqrt {\left (c+d\right )\,\left (c-d\right )}\,\left (a\,c^2+b\,d^2\right )}{c^4-c^2\,d^2}-\frac {2\,b}{c\,\left ({\mathrm {e}}^{2\,x}+1\right )}-\frac {\ln \left (-\frac {32\,b\,\left (a\,c^2+b\,d^2\right )\,\left (2\,b\,d+a\,c\,{\mathrm {e}}^x+4\,b\,c\,{\mathrm {e}}^x\right )}{c^3\,d^3}-\frac {\sqrt {\left (c+d\right )\,\left (c-d\right )}\,\left (\frac {32\,\left (a^2\,c^4+2\,a\,b\,c^2\,d^2-4\,{\mathrm {e}}^x\,b^2\,c^3\,d-2\,b^2\,c^2\,d^2+3\,{\mathrm {e}}^x\,b^2\,c\,d^3+2\,b^2\,d^4\right )}{c^2\,d^4}+\frac {\sqrt {\left (c+d\right )\,\left (c-d\right )}\,\left (a\,c^2+b\,d^2\right )\,\left (\frac {32\,c\,\left (2\,b\,d^3+4\,a\,c^3\,{\mathrm {e}}^x+2\,a\,c^2\,d-a\,c\,d^2\,{\mathrm {e}}^x+3\,b\,c\,d^2\,{\mathrm {e}}^x\right )}{d^5}-\frac {32\,\sqrt {\left (c+d\right )\,\left (c-d\right )}\,\left (a\,c^2+b\,d^2\right )\,\left (4\,{\mathrm {e}}^x\,c^3+3\,c^2\,d-3\,{\mathrm {e}}^x\,c\,d^2-2\,d^3\right )}{d^5\,\left (c^2-d^2\right )}\right )}{c^2\,\left (c^2-d^2\right )}\right )\,\left (a\,c^2+b\,d^2\right )}{c^2\,\left (c^2-d^2\right )}\right )\,\sqrt {\left (c+d\right )\,\left (c-d\right )}\,\left (a\,c^2+b\,d^2\right )}{c^4-c^2\,d^2}+\frac {b\,d\,\ln \left ({\mathrm {e}}^x-\mathrm {i}\right )\,1{}\mathrm {i}}{c^2}-\frac {b\,d\,\ln \left ({\mathrm {e}}^x+1{}\mathrm {i}\right )\,1{}\mathrm {i}}{c^2} \]

input
int((a + b/cosh(x)^2)/(c + d*cosh(x)),x)
 
output
(log((((c + d)*(c - d))^(1/2)*((32*(a^2*c^4 + 2*b^2*d^4 - 2*b^2*c^2*d^2 + 
3*b^2*c*d^3*exp(x) - 4*b^2*c^3*d*exp(x) + 2*a*b*c^2*d^2))/(c^2*d^4) - (((c 
 + d)*(c - d))^(1/2)*(a*c^2 + b*d^2)*((32*c*(2*b*d^3 + 4*a*c^3*exp(x) + 2* 
a*c^2*d - a*c*d^2*exp(x) + 3*b*c*d^2*exp(x)))/d^5 + (32*((c + d)*(c - d))^ 
(1/2)*(a*c^2 + b*d^2)*(3*c^2*d - 2*d^3 + 4*c^3*exp(x) - 3*c*d^2*exp(x)))/( 
d^5*(c^2 - d^2))))/(c^2*(c^2 - d^2)))*(a*c^2 + b*d^2))/(c^2*(c^2 - d^2)) - 
 (32*b*(a*c^2 + b*d^2)*(2*b*d + a*c*exp(x) + 4*b*c*exp(x)))/(c^3*d^3))*((c 
 + d)*(c - d))^(1/2)*(a*c^2 + b*d^2))/(c^4 - c^2*d^2) - (2*b)/(c*(exp(2*x) 
 + 1)) - (log(- (32*b*(a*c^2 + b*d^2)*(2*b*d + a*c*exp(x) + 4*b*c*exp(x))) 
/(c^3*d^3) - (((c + d)*(c - d))^(1/2)*((32*(a^2*c^4 + 2*b^2*d^4 - 2*b^2*c^ 
2*d^2 + 3*b^2*c*d^3*exp(x) - 4*b^2*c^3*d*exp(x) + 2*a*b*c^2*d^2))/(c^2*d^4 
) + (((c + d)*(c - d))^(1/2)*(a*c^2 + b*d^2)*((32*c*(2*b*d^3 + 4*a*c^3*exp 
(x) + 2*a*c^2*d - a*c*d^2*exp(x) + 3*b*c*d^2*exp(x)))/d^5 - (32*((c + d)*( 
c - d))^(1/2)*(a*c^2 + b*d^2)*(3*c^2*d - 2*d^3 + 4*c^3*exp(x) - 3*c*d^2*ex 
p(x)))/(d^5*(c^2 - d^2))))/(c^2*(c^2 - d^2)))*(a*c^2 + b*d^2))/(c^2*(c^2 - 
 d^2)))*((c + d)*(c - d))^(1/2)*(a*c^2 + b*d^2))/(c^4 - c^2*d^2) + (b*d*lo 
g(exp(x) - 1i)*1i)/c^2 - (b*d*log(exp(x) + 1i)*1i)/c^2