3.10.40 \(\int e^x \text {sech}^2(2 x) \tanh ^2(2 x) \, dx\) [940]

3.10.40.1 Optimal result
3.10.40.2 Mathematica [C] (verified)
3.10.40.3 Rubi [A] (verified)
3.10.40.4 Maple [C] (verified)
3.10.40.5 Fricas [C] (verification not implemented)
3.10.40.6 Sympy [F]
3.10.40.7 Maxima [A] (verification not implemented)
3.10.40.8 Giac [A] (verification not implemented)
3.10.40.9 Mupad [B] (verification not implemented)

3.10.40.1 Optimal result

Integrand size = 16, antiderivative size = 149 \[ \int e^x \text {sech}^2(2 x) \tanh ^2(2 x) \, dx=\frac {4 e^{5 x}}{3 \left (1+e^{4 x}\right )^3}-\frac {5 e^{5 x}}{6 \left (1+e^{4 x}\right )^2}-\frac {3 e^x}{8 \left (1+e^{4 x}\right )}-\frac {3 \arctan \left (1-\sqrt {2} e^x\right )}{16 \sqrt {2}}+\frac {3 \arctan \left (1+\sqrt {2} e^x\right )}{16 \sqrt {2}}-\frac {3 \log \left (1-\sqrt {2} e^x+e^{2 x}\right )}{32 \sqrt {2}}+\frac {3 \log \left (1+\sqrt {2} e^x+e^{2 x}\right )}{32 \sqrt {2}} \]

output
4/3*exp(5*x)/(1+exp(4*x))^3-5/6*exp(5*x)/(1+exp(4*x))^2-3/8*exp(x)/(1+exp( 
4*x))+3/32*arctan(-1+exp(x)*2^(1/2))*2^(1/2)+3/32*arctan(1+exp(x)*2^(1/2)) 
*2^(1/2)-3/64*ln(1+exp(2*x)-exp(x)*2^(1/2))*2^(1/2)+3/64*ln(1+exp(2*x)+exp 
(x)*2^(1/2))*2^(1/2)
 
3.10.40.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.06 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.43 \[ \int e^x \text {sech}^2(2 x) \tanh ^2(2 x) \, dx=\frac {1}{96} \left (-\frac {4 e^x \left (9+6 e^{4 x}+29 e^{8 x}\right )}{\left (1+e^{4 x}\right )^3}-9 \text {RootSum}\left [1+\text {$\#$1}^4\&,\frac {x-\log \left (e^x-\text {$\#$1}\right )}{\text {$\#$1}^3}\&\right ]\right ) \]

input
Integrate[E^x*Sech[2*x]^2*Tanh[2*x]^2,x]
 
output
((-4*E^x*(9 + 6*E^(4*x) + 29*E^(8*x)))/(1 + E^(4*x))^3 - 9*RootSum[1 + #1^ 
4 & , (x - Log[E^x - #1])/#1^3 & ])/96
 
3.10.40.3 Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.15, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.875, Rules used = {2720, 27, 963, 27, 957, 817, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int e^x \tanh ^2(2 x) \text {sech}^2(2 x) \, dx\)

\(\Big \downarrow \) 2720

\(\displaystyle \int \frac {4 e^{4 x} \left (1-e^{4 x}\right )^2}{\left (e^{4 x}+1\right )^4}de^x\)

\(\Big \downarrow \) 27

\(\displaystyle 4 \int \frac {e^{4 x} \left (1-e^{4 x}\right )^2}{\left (1+e^{4 x}\right )^4}de^x\)

\(\Big \downarrow \) 963

\(\displaystyle 4 \left (\frac {e^{5 x}}{3 \left (e^{4 x}+1\right )^3}-\frac {1}{12} \int \frac {4 e^{4 x} \left (2-3 e^{4 x}\right )}{\left (1+e^{4 x}\right )^3}de^x\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 4 \left (\frac {e^{5 x}}{3 \left (e^{4 x}+1\right )^3}-\frac {1}{3} \int \frac {e^{4 x} \left (2-3 e^{4 x}\right )}{\left (1+e^{4 x}\right )^3}de^x\right )\)

\(\Big \downarrow \) 957

\(\displaystyle 4 \left (\frac {1}{3} \left (\frac {9}{8} \int \frac {e^{4 x}}{\left (1+e^{4 x}\right )^2}de^x-\frac {5 e^{5 x}}{8 \left (e^{4 x}+1\right )^2}\right )+\frac {e^{5 x}}{3 \left (e^{4 x}+1\right )^3}\right )\)

\(\Big \downarrow \) 817

\(\displaystyle 4 \left (\frac {1}{3} \left (\frac {9}{8} \left (\frac {1}{4} \int \frac {1}{1+e^{4 x}}de^x-\frac {e^x}{4 \left (e^{4 x}+1\right )}\right )-\frac {5 e^{5 x}}{8 \left (e^{4 x}+1\right )^2}\right )+\frac {e^{5 x}}{3 \left (e^{4 x}+1\right )^3}\right )\)

\(\Big \downarrow \) 755

\(\displaystyle 4 \left (\frac {1}{3} \left (\frac {9}{8} \left (\frac {1}{4} \left (\frac {1}{2} \int \frac {1-e^{2 x}}{1+e^{4 x}}de^x+\frac {1}{2} \int \frac {1+e^{2 x}}{1+e^{4 x}}de^x\right )-\frac {e^x}{4 \left (e^{4 x}+1\right )}\right )-\frac {5 e^{5 x}}{8 \left (e^{4 x}+1\right )^2}\right )+\frac {e^{5 x}}{3 \left (e^{4 x}+1\right )^3}\right )\)

\(\Big \downarrow \) 1476

\(\displaystyle 4 \left (\frac {1}{3} \left (\frac {9}{8} \left (\frac {1}{4} \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{1-\sqrt {2} e^x+e^{2 x}}de^x+\frac {1}{2} \int \frac {1}{1+\sqrt {2} e^x+e^{2 x}}de^x\right )+\frac {1}{2} \int \frac {1-e^{2 x}}{1+e^{4 x}}de^x\right )-\frac {e^x}{4 \left (e^{4 x}+1\right )}\right )-\frac {5 e^{5 x}}{8 \left (e^{4 x}+1\right )^2}\right )+\frac {e^{5 x}}{3 \left (e^{4 x}+1\right )^3}\right )\)

\(\Big \downarrow \) 1082

\(\displaystyle 4 \left (\frac {1}{3} \left (\frac {9}{8} \left (\frac {1}{4} \left (\frac {1}{2} \left (\frac {\int \frac {1}{-1-e^{2 x}}d\left (1-\sqrt {2} e^x\right )}{\sqrt {2}}-\frac {\int \frac {1}{-1-e^{2 x}}d\left (1+\sqrt {2} e^x\right )}{\sqrt {2}}\right )+\frac {1}{2} \int \frac {1-e^{2 x}}{1+e^{4 x}}de^x\right )-\frac {e^x}{4 \left (e^{4 x}+1\right )}\right )-\frac {5 e^{5 x}}{8 \left (e^{4 x}+1\right )^2}\right )+\frac {e^{5 x}}{3 \left (e^{4 x}+1\right )^3}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle 4 \left (\frac {1}{3} \left (\frac {9}{8} \left (\frac {1}{4} \left (\frac {1}{2} \int \frac {1-e^{2 x}}{1+e^{4 x}}de^x+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} e^x+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} e^x\right )}{\sqrt {2}}\right )\right )-\frac {e^x}{4 \left (e^{4 x}+1\right )}\right )-\frac {5 e^{5 x}}{8 \left (e^{4 x}+1\right )^2}\right )+\frac {e^{5 x}}{3 \left (e^{4 x}+1\right )^3}\right )\)

\(\Big \downarrow \) 1479

\(\displaystyle 4 \left (\frac {1}{3} \left (\frac {9}{8} \left (\frac {1}{4} \left (\frac {1}{2} \left (-\frac {\int -\frac {\sqrt {2}-2 e^x}{1-\sqrt {2} e^x+e^{2 x}}de^x}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (1+\sqrt {2} e^x\right )}{1+\sqrt {2} e^x+e^{2 x}}de^x}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} e^x+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} e^x\right )}{\sqrt {2}}\right )\right )-\frac {e^x}{4 \left (e^{4 x}+1\right )}\right )-\frac {5 e^{5 x}}{8 \left (e^{4 x}+1\right )^2}\right )+\frac {e^{5 x}}{3 \left (e^{4 x}+1\right )^3}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle 4 \left (\frac {1}{3} \left (\frac {9}{8} \left (\frac {1}{4} \left (\frac {1}{2} \left (\frac {\int \frac {\sqrt {2}-2 e^x}{1-\sqrt {2} e^x+e^{2 x}}de^x}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (1+\sqrt {2} e^x\right )}{1+\sqrt {2} e^x+e^{2 x}}de^x}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} e^x+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} e^x\right )}{\sqrt {2}}\right )\right )-\frac {e^x}{4 \left (e^{4 x}+1\right )}\right )-\frac {5 e^{5 x}}{8 \left (e^{4 x}+1\right )^2}\right )+\frac {e^{5 x}}{3 \left (e^{4 x}+1\right )^3}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 4 \left (\frac {1}{3} \left (\frac {9}{8} \left (\frac {1}{4} \left (\frac {1}{2} \left (\frac {\int \frac {\sqrt {2}-2 e^x}{1-\sqrt {2} e^x+e^{2 x}}de^x}{2 \sqrt {2}}+\frac {1}{2} \int \frac {1+\sqrt {2} e^x}{1+\sqrt {2} e^x+e^{2 x}}de^x\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} e^x+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} e^x\right )}{\sqrt {2}}\right )\right )-\frac {e^x}{4 \left (e^{4 x}+1\right )}\right )-\frac {5 e^{5 x}}{8 \left (e^{4 x}+1\right )^2}\right )+\frac {e^{5 x}}{3 \left (e^{4 x}+1\right )^3}\right )\)

\(\Big \downarrow \) 1103

\(\displaystyle 4 \left (\frac {1}{3} \left (\frac {9}{8} \left (\frac {1}{4} \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} e^x+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} e^x\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (\frac {\log \left (\sqrt {2} e^x+e^{2 x}+1\right )}{2 \sqrt {2}}-\frac {\log \left (-\sqrt {2} e^x+e^{2 x}+1\right )}{2 \sqrt {2}}\right )\right )-\frac {e^x}{4 \left (e^{4 x}+1\right )}\right )-\frac {5 e^{5 x}}{8 \left (e^{4 x}+1\right )^2}\right )+\frac {e^{5 x}}{3 \left (e^{4 x}+1\right )^3}\right )\)

input
Int[E^x*Sech[2*x]^2*Tanh[2*x]^2,x]
 
output
4*(E^(5*x)/(3*(1 + E^(4*x))^3) + ((-5*E^(5*x))/(8*(1 + E^(4*x))^2) + (9*(- 
1/4*E^x/(1 + E^(4*x)) + ((-(ArcTan[1 - Sqrt[2]*E^x]/Sqrt[2]) + ArcTan[1 + 
Sqrt[2]*E^x]/Sqrt[2])/2 + (-1/2*Log[1 - Sqrt[2]*E^x + E^(2*x)]/Sqrt[2] + L 
og[1 + Sqrt[2]*E^x + E^(2*x)]/(2*Sqrt[2]))/2)/4))/8)/3)
 

3.10.40.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 817
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^( 
n - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] - Simp[c^n 
*((m - n + 1)/(b*n*(p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x], x 
] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  ! 
ILtQ[(m + n*(p + 1) + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 957
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_)), x_Symbol] :> Simp[(-(b*c - a*d))*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a 
*b*e*n*(p + 1))), x] - Simp[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*b*n* 
(p + 1))   Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, 
 m, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && (( !IntegerQ[p + 1/2] && N 
eQ[p, -5/4]) ||  !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0] && LeQ[-1 
, m, (-n)*(p + 1)]))
 

rule 963
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^2, x_Symbol] :> Simp[(-(b*c - a*d)^2)*(e*x)^(m + 1)*((a + b*x^n)^(p + 1) 
/(a*b^2*e*n*(p + 1))), x] + Simp[1/(a*b^2*n*(p + 1))   Int[(e*x)^m*(a + b*x 
^n)^(p + 1)*Simp[(b*c - a*d)^2*(m + 1) + b^2*c^2*n*(p + 1) + a*b*d^2*n*(p + 
 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] 
 && IGtQ[n, 0] && LtQ[p, -1]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 2720
Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Simp[v/D[v, x] 
   Subst[Int[FunctionOfExponentialFunction[u, x]/x, x], x, v], x]] /; Funct 
ionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; FreeQ 
[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x)) 
*(F_)[v_] /; FreeQ[{a, b, c}, x] && InverseFunctionQ[F[x]]]
 
3.10.40.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 13.56 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.34

method result size
risch \(-\frac {{\mathrm e}^{x} \left (29 \,{\mathrm e}^{8 x}+6 \,{\mathrm e}^{4 x}+9\right )}{24 \left (1+{\mathrm e}^{4 x}\right )^{3}}+4 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (268435456 \textit {\_Z}^{4}+81\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{x}+\frac {128 \textit {\_R}}{3}\right )\right )\) \(50\)
default \(\frac {\frac {3 \tanh \left (\frac {x}{2}\right )^{11}}{8}-\frac {3 \tanh \left (\frac {x}{2}\right )^{10}}{8}-\frac {109 \tanh \left (\frac {x}{2}\right )^{9}}{24}-\frac {173 \tanh \left (\frac {x}{2}\right )^{8}}{8}-\frac {49 \tanh \left (\frac {x}{2}\right )^{7}}{4}-\frac {231 \tanh \left (\frac {x}{2}\right )^{6}}{4}+\frac {49 \tanh \left (\frac {x}{2}\right )^{5}}{4}-\frac {117 \tanh \left (\frac {x}{2}\right )^{4}}{4}+\frac {109 \tanh \left (\frac {x}{2}\right )^{3}}{24}-\frac {63 \tanh \left (\frac {x}{2}\right )^{2}}{8}-\frac {3 \tanh \left (\frac {x}{2}\right )}{8}-\frac {11}{24}}{\left (\tanh \left (\frac {x}{2}\right )^{4}+6 \tanh \left (\frac {x}{2}\right )^{2}+1\right )^{3}}+\frac {3 \sqrt {2}\, \ln \left (\tanh \left (\frac {x}{2}\right )^{2}+3+2 \sqrt {2}\right )}{64}+\frac {3 \left (2+\sqrt {2}\right ) \arctan \left (\frac {2 \tanh \left (\frac {x}{2}\right )}{2+2 \sqrt {2}}\right )}{16 \left (2+2 \sqrt {2}\right )}-\frac {3 \sqrt {2}\, \ln \left (\tanh \left (\frac {x}{2}\right )^{2}+3-2 \sqrt {2}\right )}{64}-\frac {3 \left (-2+\sqrt {2}\right ) \arctan \left (\frac {2 \tanh \left (\frac {x}{2}\right )}{2 \sqrt {2}-2}\right )}{16 \left (2 \sqrt {2}-2\right )}\) \(212\)

input
int(exp(x)*sech(2*x)^2*tanh(2*x)^2,x,method=_RETURNVERBOSE)
 
output
-1/24*exp(x)*(29*exp(8*x)+6*exp(4*x)+9)/(1+exp(4*x))^3+4*sum(_R*ln(exp(x)+ 
128/3*_R),_R=RootOf(268435456*_Z^4+81))
 
3.10.40.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.29 (sec) , antiderivative size = 1616, normalized size of antiderivative = 10.85 \[ \int e^x \text {sech}^2(2 x) \tanh ^2(2 x) \, dx=\text {Too large to display} \]

input
integrate(exp(x)*sech(2*x)^2*tanh(2*x)^2,x, algorithm="fricas")
 
output
-1/192*(232*cosh(x)^9 + 19488*cosh(x)^3*sinh(x)^6 + 8352*cosh(x)^2*sinh(x) 
^7 + 2088*cosh(x)*sinh(x)^8 + 232*sinh(x)^9 + 48*(609*cosh(x)^4 + 1)*sinh( 
x)^5 + 48*cosh(x)^5 + 48*(609*cosh(x)^5 + 5*cosh(x))*sinh(x)^4 + 96*(203*c 
osh(x)^6 + 5*cosh(x)^2)*sinh(x)^3 + 96*(87*cosh(x)^7 + 5*cosh(x)^3)*sinh(x 
)^2 + 9*(-(I + 1)*sqrt(2)*cosh(x)^12 - (220*I + 220)*sqrt(2)*cosh(x)^3*sin 
h(x)^9 - (66*I + 66)*sqrt(2)*cosh(x)^2*sinh(x)^10 - (12*I + 12)*sqrt(2)*co 
sh(x)*sinh(x)^11 - (I + 1)*sqrt(2)*sinh(x)^12 + 3*(-(165*I + 165)*sqrt(2)* 
cosh(x)^4 - (I + 1)*sqrt(2))*sinh(x)^8 - (3*I + 3)*sqrt(2)*cosh(x)^8 + 24* 
(-(33*I + 33)*sqrt(2)*cosh(x)^5 - (I + 1)*sqrt(2)*cosh(x))*sinh(x)^7 + 84* 
(-(11*I + 11)*sqrt(2)*cosh(x)^6 - (I + 1)*sqrt(2)*cosh(x)^2)*sinh(x)^6 + 2 
4*(-(33*I + 33)*sqrt(2)*cosh(x)^7 - (7*I + 7)*sqrt(2)*cosh(x)^3)*sinh(x)^5 
 + 3*(-(165*I + 165)*sqrt(2)*cosh(x)^8 - (70*I + 70)*sqrt(2)*cosh(x)^4 - ( 
I + 1)*sqrt(2))*sinh(x)^4 - (3*I + 3)*sqrt(2)*cosh(x)^4 + 4*(-(55*I + 55)* 
sqrt(2)*cosh(x)^9 - (42*I + 42)*sqrt(2)*cosh(x)^5 - (3*I + 3)*sqrt(2)*cosh 
(x))*sinh(x)^3 + 6*(-(11*I + 11)*sqrt(2)*cosh(x)^10 - (14*I + 14)*sqrt(2)* 
cosh(x)^6 - (3*I + 3)*sqrt(2)*cosh(x)^2)*sinh(x)^2 + 12*(-(I + 1)*sqrt(2)* 
cosh(x)^11 - (2*I + 2)*sqrt(2)*cosh(x)^7 - (I + 1)*sqrt(2)*cosh(x)^3)*sinh 
(x) - (I + 1)*sqrt(2))*log((I + 1)*sqrt(2) + 2*cosh(x) + 2*sinh(x)) + 9*(( 
I - 1)*sqrt(2)*cosh(x)^12 + (220*I - 220)*sqrt(2)*cosh(x)^3*sinh(x)^9 + (6 
6*I - 66)*sqrt(2)*cosh(x)^2*sinh(x)^10 + (12*I - 12)*sqrt(2)*cosh(x)*si...
 
3.10.40.6 Sympy [F]

\[ \int e^x \text {sech}^2(2 x) \tanh ^2(2 x) \, dx=\int e^{x} \tanh ^{2}{\left (2 x \right )} \operatorname {sech}^{2}{\left (2 x \right )}\, dx \]

input
integrate(exp(x)*sech(2*x)**2*tanh(2*x)**2,x)
 
output
Integral(exp(x)*tanh(2*x)**2*sech(2*x)**2, x)
 
3.10.40.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.77 \[ \int e^x \text {sech}^2(2 x) \tanh ^2(2 x) \, dx=\frac {3}{32} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, e^{x}\right )}\right ) + \frac {3}{32} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, e^{x}\right )}\right ) + \frac {3}{64} \, \sqrt {2} \log \left (\sqrt {2} e^{x} + e^{\left (2 \, x\right )} + 1\right ) - \frac {3}{64} \, \sqrt {2} \log \left (-\sqrt {2} e^{x} + e^{\left (2 \, x\right )} + 1\right ) - \frac {29 \, e^{\left (9 \, x\right )} + 6 \, e^{\left (5 \, x\right )} + 9 \, e^{x}}{24 \, {\left (e^{\left (12 \, x\right )} + 3 \, e^{\left (8 \, x\right )} + 3 \, e^{\left (4 \, x\right )} + 1\right )}} \]

input
integrate(exp(x)*sech(2*x)^2*tanh(2*x)^2,x, algorithm="maxima")
 
output
3/32*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*e^x)) + 3/32*sqrt(2)*arctan(- 
1/2*sqrt(2)*(sqrt(2) - 2*e^x)) + 3/64*sqrt(2)*log(sqrt(2)*e^x + e^(2*x) + 
1) - 3/64*sqrt(2)*log(-sqrt(2)*e^x + e^(2*x) + 1) - 1/24*(29*e^(9*x) + 6*e 
^(5*x) + 9*e^x)/(e^(12*x) + 3*e^(8*x) + 3*e^(4*x) + 1)
 
3.10.40.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.69 \[ \int e^x \text {sech}^2(2 x) \tanh ^2(2 x) \, dx=\frac {3}{32} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, e^{x}\right )}\right ) + \frac {3}{32} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, e^{x}\right )}\right ) + \frac {3}{64} \, \sqrt {2} \log \left (\sqrt {2} e^{x} + e^{\left (2 \, x\right )} + 1\right ) - \frac {3}{64} \, \sqrt {2} \log \left (-\sqrt {2} e^{x} + e^{\left (2 \, x\right )} + 1\right ) - \frac {29 \, e^{\left (9 \, x\right )} + 6 \, e^{\left (5 \, x\right )} + 9 \, e^{x}}{24 \, {\left (e^{\left (4 \, x\right )} + 1\right )}^{3}} \]

input
integrate(exp(x)*sech(2*x)^2*tanh(2*x)^2,x, algorithm="giac")
 
output
3/32*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*e^x)) + 3/32*sqrt(2)*arctan(- 
1/2*sqrt(2)*(sqrt(2) - 2*e^x)) + 3/64*sqrt(2)*log(sqrt(2)*e^x + e^(2*x) + 
1) - 3/64*sqrt(2)*log(-sqrt(2)*e^x + e^(2*x) + 1) - 1/24*(29*e^(9*x) + 6*e 
^(5*x) + 9*e^x)/(e^(4*x) + 1)^3
 
3.10.40.9 Mupad [B] (verification not implemented)

Time = 2.83 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.03 \[ \int e^x \text {sech}^2(2 x) \tanh ^2(2 x) \, dx=\frac {5\,{\mathrm {e}}^x}{6\,\left (2\,{\mathrm {e}}^{4\,x}+{\mathrm {e}}^{8\,x}+1\right )}-\frac {\frac {{\mathrm {e}}^{9\,x}}{3}-\frac {2\,{\mathrm {e}}^{5\,x}}{3}+\frac {{\mathrm {e}}^x}{3}}{3\,{\mathrm {e}}^{4\,x}+3\,{\mathrm {e}}^{8\,x}+{\mathrm {e}}^{12\,x}+1}-\frac {7\,{\mathrm {e}}^x}{8\,\left ({\mathrm {e}}^{4\,x}+1\right )}+\sqrt {2}\,\ln \left (-\frac {3\,{\mathrm {e}}^x}{8}+\sqrt {2}\,\left (-\frac {3}{16}-\frac {3}{16}{}\mathrm {i}\right )\right )\,\left (\frac {3}{64}+\frac {3}{64}{}\mathrm {i}\right )+\sqrt {2}\,\ln \left (-\frac {3\,{\mathrm {e}}^x}{8}+\sqrt {2}\,\left (-\frac {3}{16}+\frac {3}{16}{}\mathrm {i}\right )\right )\,\left (\frac {3}{64}-\frac {3}{64}{}\mathrm {i}\right )+\sqrt {2}\,\ln \left (-\frac {3\,{\mathrm {e}}^x}{8}+\sqrt {2}\,\left (\frac {3}{16}-\frac {3}{16}{}\mathrm {i}\right )\right )\,\left (-\frac {3}{64}+\frac {3}{64}{}\mathrm {i}\right )+\sqrt {2}\,\ln \left (-\frac {3\,{\mathrm {e}}^x}{8}+\sqrt {2}\,\left (\frac {3}{16}+\frac {3}{16}{}\mathrm {i}\right )\right )\,\left (-\frac {3}{64}-\frac {3}{64}{}\mathrm {i}\right ) \]

input
int((tanh(2*x)^2*exp(x))/cosh(2*x)^2,x)
 
output
2^(1/2)*log(- (3*exp(x))/8 - 2^(1/2)*(3/16 + 3i/16))*(3/64 + 3i/64) - (exp 
(9*x)/3 - (2*exp(5*x))/3 + exp(x)/3)/(3*exp(4*x) + 3*exp(8*x) + exp(12*x) 
+ 1) - (7*exp(x))/(8*(exp(4*x) + 1)) + 2^(1/2)*log(- (3*exp(x))/8 - 2^(1/2 
)*(3/16 - 3i/16))*(3/64 - 3i/64) - 2^(1/2)*log(2^(1/2)*(3/16 - 3i/16) - (3 
*exp(x))/8)*(3/64 - 3i/64) - 2^(1/2)*log(2^(1/2)*(3/16 + 3i/16) - (3*exp(x 
))/8)*(3/64 + 3i/64) + (5*exp(x))/(6*(2*exp(4*x) + exp(8*x) + 1))