3.2.65 \(\int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^2} \, dx\) [165]

3.2.65.1 Optimal result
3.2.65.2 Mathematica [A] (verified)
3.2.65.3 Rubi [A] (verified)
3.2.65.4 Maple [A] (verified)
3.2.65.5 Fricas [F]
3.2.65.6 Sympy [F]
3.2.65.7 Maxima [F]
3.2.65.8 Giac [F]
3.2.65.9 Mupad [F(-1)]

3.2.65.1 Optimal result

Integrand size = 21, antiderivative size = 103 \[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^2} \, dx=-\frac {e (c+d x) \sqrt {1+(c+d x)^2}}{b d (a+b \text {arcsinh}(c+d x))}+\frac {e \cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{b^2 d}-\frac {e \sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{b^2 d} \]

output
e*Chi(2*(a+b*arcsinh(d*x+c))/b)*cosh(2*a/b)/b^2/d-e*Shi(2*(a+b*arcsinh(d*x 
+c))/b)*sinh(2*a/b)/b^2/d-e*(d*x+c)*(1+(d*x+c)^2)^(1/2)/b/d/(a+b*arcsinh(d 
*x+c))
 
3.2.65.2 Mathematica [A] (verified)

Time = 0.44 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.94 \[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^2} \, dx=\frac {e \left (-\frac {b (c+d x) \sqrt {1+c^2+2 c d x+d^2 x^2}}{a+b \text {arcsinh}(c+d x)}+\cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (2 \left (\frac {a}{b}+\text {arcsinh}(c+d x)\right )\right )-\sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (2 \left (\frac {a}{b}+\text {arcsinh}(c+d x)\right )\right )\right )}{b^2 d} \]

input
Integrate[(c*e + d*e*x)/(a + b*ArcSinh[c + d*x])^2,x]
 
output
(e*(-((b*(c + d*x)*Sqrt[1 + c^2 + 2*c*d*x + d^2*x^2])/(a + b*ArcSinh[c + d 
*x])) + Cosh[(2*a)/b]*CoshIntegral[2*(a/b + ArcSinh[c + d*x])] - Sinh[(2*a 
)/b]*SinhIntegral[2*(a/b + ArcSinh[c + d*x])]))/(b^2*d)
 
3.2.65.3 Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.92, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {6274, 27, 6193, 3042, 3784, 26, 3042, 26, 3779, 3782}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^2} \, dx\)

\(\Big \downarrow \) 6274

\(\displaystyle \frac {\int \frac {e (c+d x)}{(a+b \text {arcsinh}(c+d x))^2}d(c+d x)}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e \int \frac {c+d x}{(a+b \text {arcsinh}(c+d x))^2}d(c+d x)}{d}\)

\(\Big \downarrow \) 6193

\(\displaystyle \frac {e \left (\frac {\int \frac {\cosh \left (\frac {2 a}{b}-\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))}{b^2}-\frac {(c+d x) \sqrt {(c+d x)^2+1}}{b (a+b \text {arcsinh}(c+d x))}\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {e \left (-\frac {(c+d x) \sqrt {(c+d x)^2+1}}{b (a+b \text {arcsinh}(c+d x))}+\frac {\int \frac {\sin \left (\frac {2 i a}{b}-\frac {2 i (a+b \text {arcsinh}(c+d x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))}{b^2}\right )}{d}\)

\(\Big \downarrow \) 3784

\(\displaystyle \frac {e \left (-\frac {(c+d x) \sqrt {(c+d x)^2+1}}{b (a+b \text {arcsinh}(c+d x))}+\frac {\cosh \left (\frac {2 a}{b}\right ) \int \frac {\cosh \left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))-i \sinh \left (\frac {2 a}{b}\right ) \int -\frac {i \sinh \left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))}{b^2}\right )}{d}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {e \left (\frac {\cosh \left (\frac {2 a}{b}\right ) \int \frac {\cosh \left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))-\sinh \left (\frac {2 a}{b}\right ) \int \frac {\sinh \left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))}{b^2}-\frac {(c+d x) \sqrt {(c+d x)^2+1}}{b (a+b \text {arcsinh}(c+d x))}\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {e \left (-\frac {(c+d x) \sqrt {(c+d x)^2+1}}{b (a+b \text {arcsinh}(c+d x))}+\frac {\cosh \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 i (a+b \text {arcsinh}(c+d x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))-\sinh \left (\frac {2 a}{b}\right ) \int -\frac {i \sin \left (\frac {2 i (a+b \text {arcsinh}(c+d x))}{b}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))}{b^2}\right )}{d}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {e \left (-\frac {(c+d x) \sqrt {(c+d x)^2+1}}{b (a+b \text {arcsinh}(c+d x))}+\frac {i \sinh \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 i (a+b \text {arcsinh}(c+d x))}{b}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))+\cosh \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 i (a+b \text {arcsinh}(c+d x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))}{b^2}\right )}{d}\)

\(\Big \downarrow \) 3779

\(\displaystyle \frac {e \left (-\frac {(c+d x) \sqrt {(c+d x)^2+1}}{b (a+b \text {arcsinh}(c+d x))}+\frac {-\sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )+\cosh \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 i (a+b \text {arcsinh}(c+d x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))}{b^2}\right )}{d}\)

\(\Big \downarrow \) 3782

\(\displaystyle \frac {e \left (\frac {\cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )-\sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{b^2}-\frac {(c+d x) \sqrt {(c+d x)^2+1}}{b (a+b \text {arcsinh}(c+d x))}\right )}{d}\)

input
Int[(c*e + d*e*x)/(a + b*ArcSinh[c + d*x])^2,x]
 
output
(e*(-(((c + d*x)*Sqrt[1 + (c + d*x)^2])/(b*(a + b*ArcSinh[c + d*x]))) + (C 
osh[(2*a)/b]*CoshIntegral[(2*(a + b*ArcSinh[c + d*x]))/b] - Sinh[(2*a)/b]* 
SinhIntegral[(2*(a + b*ArcSinh[c + d*x]))/b])/b^2))/d
 

3.2.65.3.1 Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3779
Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbo 
l] :> Simp[I*(SinhIntegral[c*f*(fz/d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f 
, fz}, x] && EqQ[d*e - c*f*fz*I, 0]
 

rule 3782
Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbo 
l] :> Simp[CoshIntegral[c*f*(fz/d) + f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz 
}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]
 

rule 3784
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[Cos[(d* 
e - c*f)/d]   Int[Sin[c*(f/d) + f*x]/(c + d*x), x], x] + Simp[Sin[(d*e - c* 
f)/d]   Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f}, x] 
&& NeQ[d*e - c*f, 0]
 

rule 6193
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[ 
x^m*Sqrt[1 + c^2*x^2]*((a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1))), x] - Si 
mp[1/(b^2*c^(m + 1)*(n + 1))   Subst[Int[ExpandTrigReduce[x^(n + 1), Sinh[- 
a/b + x/b]^(m - 1)*(m + (m + 1)*Sinh[-a/b + x/b]^2), x], x], x, a + b*ArcSi 
nh[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, - 
1]
 

rule 6274
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^( 
m_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b* 
ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
3.2.65.4 Maple [A] (verified)

Time = 0.06 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.55

method result size
derivativedivides \(\frac {\frac {\left (-2 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}+2 \left (d x +c \right )^{2}+1\right ) e}{4 b \left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )}-\frac {e \,{\mathrm e}^{\frac {2 a}{b}} \operatorname {Ei}_{1}\left (2 \,\operatorname {arcsinh}\left (d x +c \right )+\frac {2 a}{b}\right )}{2 b^{2}}-\frac {e \left (2 \left (d x +c \right )^{2}+1+2 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}\right )}{4 b \left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )}-\frac {e \,{\mathrm e}^{-\frac {2 a}{b}} \operatorname {Ei}_{1}\left (-2 \,\operatorname {arcsinh}\left (d x +c \right )-\frac {2 a}{b}\right )}{2 b^{2}}}{d}\) \(160\)
default \(\frac {\frac {\left (-2 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}+2 \left (d x +c \right )^{2}+1\right ) e}{4 b \left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )}-\frac {e \,{\mathrm e}^{\frac {2 a}{b}} \operatorname {Ei}_{1}\left (2 \,\operatorname {arcsinh}\left (d x +c \right )+\frac {2 a}{b}\right )}{2 b^{2}}-\frac {e \left (2 \left (d x +c \right )^{2}+1+2 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}\right )}{4 b \left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )}-\frac {e \,{\mathrm e}^{-\frac {2 a}{b}} \operatorname {Ei}_{1}\left (-2 \,\operatorname {arcsinh}\left (d x +c \right )-\frac {2 a}{b}\right )}{2 b^{2}}}{d}\) \(160\)

input
int((d*e*x+c*e)/(a+b*arcsinh(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
1/d*(1/4*(-2*(d*x+c)*(1+(d*x+c)^2)^(1/2)+2*(d*x+c)^2+1)*e/b/(a+b*arcsinh(d 
*x+c))-1/2*e/b^2*exp(2*a/b)*Ei(1,2*arcsinh(d*x+c)+2*a/b)-1/4/b*e*(2*(d*x+c 
)^2+1+2*(d*x+c)*(1+(d*x+c)^2)^(1/2))/(a+b*arcsinh(d*x+c))-1/2/b^2*e*exp(-2 
*a/b)*Ei(1,-2*arcsinh(d*x+c)-2*a/b))
 
3.2.65.5 Fricas [F]

\[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^2} \, dx=\int { \frac {d e x + c e}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{2}} \,d x } \]

input
integrate((d*e*x+c*e)/(a+b*arcsinh(d*x+c))^2,x, algorithm="fricas")
 
output
integral((d*e*x + c*e)/(b^2*arcsinh(d*x + c)^2 + 2*a*b*arcsinh(d*x + c) + 
a^2), x)
 
3.2.65.6 Sympy [F]

\[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^2} \, dx=e \left (\int \frac {c}{a^{2} + 2 a b \operatorname {asinh}{\left (c + d x \right )} + b^{2} \operatorname {asinh}^{2}{\left (c + d x \right )}}\, dx + \int \frac {d x}{a^{2} + 2 a b \operatorname {asinh}{\left (c + d x \right )} + b^{2} \operatorname {asinh}^{2}{\left (c + d x \right )}}\, dx\right ) \]

input
integrate((d*e*x+c*e)/(a+b*asinh(d*x+c))**2,x)
 
output
e*(Integral(c/(a**2 + 2*a*b*asinh(c + d*x) + b**2*asinh(c + d*x)**2), x) + 
 Integral(d*x/(a**2 + 2*a*b*asinh(c + d*x) + b**2*asinh(c + d*x)**2), x))
 
3.2.65.7 Maxima [F]

\[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^2} \, dx=\int { \frac {d e x + c e}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{2}} \,d x } \]

input
integrate((d*e*x+c*e)/(a+b*arcsinh(d*x+c))^2,x, algorithm="maxima")
 
output
-(d^4*e*x^4 + 4*c*d^3*e*x^3 + c^4*e + c^2*e + (6*c^2*d^2*e + d^2*e)*x^2 + 
2*(2*c^3*d*e + c*d*e)*x + (d^3*e*x^3 + 3*c*d^2*e*x^2 + c^3*e + c*e + (3*c^ 
2*d*e + d*e)*x)*sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1))/(a*b*d^3*x^2 + 2*a*b*c* 
d^2*x + (c^2*d + d)*a*b + (b^2*d^3*x^2 + 2*b^2*c*d^2*x + (c^2*d + d)*b^2 + 
 (b^2*d^2*x + b^2*c*d)*sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1))*log(d*x + c + sq 
rt(d^2*x^2 + 2*c*d*x + c^2 + 1)) + (a*b*d^2*x + a*b*c*d)*sqrt(d^2*x^2 + 2* 
c*d*x + c^2 + 1)) + integrate((2*d^5*e*x^5 + 10*c*d^4*e*x^4 + 2*c^5*e + 4* 
c^3*e + 4*(5*c^2*d^3*e + d^3*e)*x^3 + 4*(5*c^3*d^2*e + 3*c*d^2*e)*x^2 + 2* 
(d^3*e*x^3 + 3*c*d^2*e*x^2 + 3*c^2*d*e*x + c^3*e)*(d^2*x^2 + 2*c*d*x + c^2 
 + 1) + 2*c*e + 2*(5*c^4*d*e + 6*c^2*d*e + d*e)*x + (4*d^4*e*x^4 + 16*c*d^ 
3*e*x^3 + 4*c^4*e + 4*c^2*e + 4*(6*c^2*d^2*e + d^2*e)*x^2 + 8*(2*c^3*d*e + 
 c*d*e)*x + e)*sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1))/(a*b*d^4*x^4 + 4*a*b*c*d 
^3*x^3 + 2*(3*c^2*d^2 + d^2)*a*b*x^2 + 4*(c^3*d + c*d)*a*b*x + (c^4 + 2*c^ 
2 + 1)*a*b + (a*b*d^2*x^2 + 2*a*b*c*d*x + a*b*c^2)*(d^2*x^2 + 2*c*d*x + c^ 
2 + 1) + (b^2*d^4*x^4 + 4*b^2*c*d^3*x^3 + 2*(3*c^2*d^2 + d^2)*b^2*x^2 + 4* 
(c^3*d + c*d)*b^2*x + (c^4 + 2*c^2 + 1)*b^2 + (b^2*d^2*x^2 + 2*b^2*c*d*x + 
 b^2*c^2)*(d^2*x^2 + 2*c*d*x + c^2 + 1) + 2*(b^2*d^3*x^3 + 3*b^2*c*d^2*x^2 
 + (3*c^2*d + d)*b^2*x + (c^3 + c)*b^2)*sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1)) 
*log(d*x + c + sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1)) + 2*(a*b*d^3*x^3 + 3*a*b 
*c*d^2*x^2 + (3*c^2*d + d)*a*b*x + (c^3 + c)*a*b)*sqrt(d^2*x^2 + 2*c*d*...
 
3.2.65.8 Giac [F]

\[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^2} \, dx=\int { \frac {d e x + c e}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{2}} \,d x } \]

input
integrate((d*e*x+c*e)/(a+b*arcsinh(d*x+c))^2,x, algorithm="giac")
 
output
integrate((d*e*x + c*e)/(b*arcsinh(d*x + c) + a)^2, x)
 
3.2.65.9 Mupad [F(-1)]

Timed out. \[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^2} \, dx=\int \frac {c\,e+d\,e\,x}{{\left (a+b\,\mathrm {asinh}\left (c+d\,x\right )\right )}^2} \,d x \]

input
int((c*e + d*e*x)/(a + b*asinh(c + d*x))^2,x)
 
output
int((c*e + d*e*x)/(a + b*asinh(c + d*x))^2, x)