3.2.77 \(\int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^4} \, dx\) [177]

3.2.77.1 Optimal result
3.2.77.2 Mathematica [A] (verified)
3.2.77.3 Rubi [A] (verified)
3.2.77.4 Maple [A] (verified)
3.2.77.5 Fricas [F]
3.2.77.6 Sympy [F]
3.2.77.7 Maxima [F(-1)]
3.2.77.8 Giac [F]
3.2.77.9 Mupad [F(-1)]

3.2.77.1 Optimal result

Integrand size = 21, antiderivative size = 204 \[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^4} \, dx=-\frac {e (c+d x) \sqrt {1+(c+d x)^2}}{3 b d (a+b \text {arcsinh}(c+d x))^3}-\frac {e}{6 b^2 d (a+b \text {arcsinh}(c+d x))^2}-\frac {e (c+d x)^2}{3 b^2 d (a+b \text {arcsinh}(c+d x))^2}-\frac {2 e (c+d x) \sqrt {1+(c+d x)^2}}{3 b^3 d (a+b \text {arcsinh}(c+d x))}+\frac {2 e \cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{3 b^4 d}-\frac {2 e \sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{3 b^4 d} \]

output
-1/6*e/b^2/d/(a+b*arcsinh(d*x+c))^2-1/3*e*(d*x+c)^2/b^2/d/(a+b*arcsinh(d*x 
+c))^2+2/3*e*Chi(2*(a+b*arcsinh(d*x+c))/b)*cosh(2*a/b)/b^4/d-2/3*e*Shi(2*( 
a+b*arcsinh(d*x+c))/b)*sinh(2*a/b)/b^4/d-1/3*e*(d*x+c)*(1+(d*x+c)^2)^(1/2) 
/b/d/(a+b*arcsinh(d*x+c))^3-2/3*e*(d*x+c)*(1+(d*x+c)^2)^(1/2)/b^3/d/(a+b*a 
rcsinh(d*x+c))
 
3.2.77.2 Mathematica [A] (verified)

Time = 0.78 (sec) , antiderivative size = 181, normalized size of antiderivative = 0.89 \[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^4} \, dx=\frac {e \left (-\frac {2 b^3 (c+d x) \sqrt {1+(c+d x)^2}}{(a+b \text {arcsinh}(c+d x))^3}+\frac {b^2 \left (-1-2 (c+d x)^2\right )}{(a+b \text {arcsinh}(c+d x))^2}-\frac {4 b (c+d x) \sqrt {1+(c+d x)^2}}{a+b \text {arcsinh}(c+d x)}+4 \cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (2 \left (\frac {a}{b}+\text {arcsinh}(c+d x)\right )\right )+4 \log (a+b \text {arcsinh}(c+d x))-4 \left (\log (a+b \text {arcsinh}(c+d x))+\sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (2 \left (\frac {a}{b}+\text {arcsinh}(c+d x)\right )\right )\right )\right )}{6 b^4 d} \]

input
Integrate[(c*e + d*e*x)/(a + b*ArcSinh[c + d*x])^4,x]
 
output
(e*((-2*b^3*(c + d*x)*Sqrt[1 + (c + d*x)^2])/(a + b*ArcSinh[c + d*x])^3 + 
(b^2*(-1 - 2*(c + d*x)^2))/(a + b*ArcSinh[c + d*x])^2 - (4*b*(c + d*x)*Sqr 
t[1 + (c + d*x)^2])/(a + b*ArcSinh[c + d*x]) + 4*Cosh[(2*a)/b]*CoshIntegra 
l[2*(a/b + ArcSinh[c + d*x])] + 4*Log[a + b*ArcSinh[c + d*x]] - 4*(Log[a + 
 b*ArcSinh[c + d*x]] + Sinh[(2*a)/b]*SinhIntegral[2*(a/b + ArcSinh[c + d*x 
])])))/(6*b^4*d)
 
3.2.77.3 Rubi [A] (verified)

Time = 1.11 (sec) , antiderivative size = 190, normalized size of antiderivative = 0.93, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.619, Rules used = {6274, 27, 6194, 6198, 6233, 6193, 3042, 3784, 26, 3042, 26, 3779, 3782}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^4} \, dx\)

\(\Big \downarrow \) 6274

\(\displaystyle \frac {\int \frac {e (c+d x)}{(a+b \text {arcsinh}(c+d x))^4}d(c+d x)}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e \int \frac {c+d x}{(a+b \text {arcsinh}(c+d x))^4}d(c+d x)}{d}\)

\(\Big \downarrow \) 6194

\(\displaystyle \frac {e \left (\frac {\int \frac {1}{\sqrt {(c+d x)^2+1} (a+b \text {arcsinh}(c+d x))^3}d(c+d x)}{3 b}+\frac {2 \int \frac {(c+d x)^2}{\sqrt {(c+d x)^2+1} (a+b \text {arcsinh}(c+d x))^3}d(c+d x)}{3 b}-\frac {\sqrt {(c+d x)^2+1} (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^3}\right )}{d}\)

\(\Big \downarrow \) 6198

\(\displaystyle \frac {e \left (\frac {2 \int \frac {(c+d x)^2}{\sqrt {(c+d x)^2+1} (a+b \text {arcsinh}(c+d x))^3}d(c+d x)}{3 b}-\frac {1}{6 b^2 (a+b \text {arcsinh}(c+d x))^2}-\frac {\sqrt {(c+d x)^2+1} (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^3}\right )}{d}\)

\(\Big \downarrow \) 6233

\(\displaystyle \frac {e \left (\frac {2 \left (\frac {\int \frac {c+d x}{(a+b \text {arcsinh}(c+d x))^2}d(c+d x)}{b}-\frac {(c+d x)^2}{2 b (a+b \text {arcsinh}(c+d x))^2}\right )}{3 b}-\frac {1}{6 b^2 (a+b \text {arcsinh}(c+d x))^2}-\frac {\sqrt {(c+d x)^2+1} (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^3}\right )}{d}\)

\(\Big \downarrow \) 6193

\(\displaystyle \frac {e \left (\frac {2 \left (\frac {\frac {\int \frac {\cosh \left (\frac {2 a}{b}-\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))}{b^2}-\frac {(c+d x) \sqrt {(c+d x)^2+1}}{b (a+b \text {arcsinh}(c+d x))}}{b}-\frac {(c+d x)^2}{2 b (a+b \text {arcsinh}(c+d x))^2}\right )}{3 b}-\frac {1}{6 b^2 (a+b \text {arcsinh}(c+d x))^2}-\frac {\sqrt {(c+d x)^2+1} (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^3}\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {e \left (\frac {2 \left (-\frac {(c+d x)^2}{2 b (a+b \text {arcsinh}(c+d x))^2}+\frac {-\frac {(c+d x) \sqrt {(c+d x)^2+1}}{b (a+b \text {arcsinh}(c+d x))}+\frac {\int \frac {\sin \left (\frac {2 i a}{b}-\frac {2 i (a+b \text {arcsinh}(c+d x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))}{b^2}}{b}\right )}{3 b}-\frac {1}{6 b^2 (a+b \text {arcsinh}(c+d x))^2}-\frac {\sqrt {(c+d x)^2+1} (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^3}\right )}{d}\)

\(\Big \downarrow \) 3784

\(\displaystyle \frac {e \left (\frac {2 \left (-\frac {(c+d x)^2}{2 b (a+b \text {arcsinh}(c+d x))^2}+\frac {-\frac {(c+d x) \sqrt {(c+d x)^2+1}}{b (a+b \text {arcsinh}(c+d x))}+\frac {\cosh \left (\frac {2 a}{b}\right ) \int \frac {\cosh \left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))-i \sinh \left (\frac {2 a}{b}\right ) \int -\frac {i \sinh \left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))}{b^2}}{b}\right )}{3 b}-\frac {1}{6 b^2 (a+b \text {arcsinh}(c+d x))^2}-\frac {\sqrt {(c+d x)^2+1} (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^3}\right )}{d}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {e \left (\frac {2 \left (\frac {\frac {\cosh \left (\frac {2 a}{b}\right ) \int \frac {\cosh \left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))-\sinh \left (\frac {2 a}{b}\right ) \int \frac {\sinh \left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))}{b^2}-\frac {(c+d x) \sqrt {(c+d x)^2+1}}{b (a+b \text {arcsinh}(c+d x))}}{b}-\frac {(c+d x)^2}{2 b (a+b \text {arcsinh}(c+d x))^2}\right )}{3 b}-\frac {1}{6 b^2 (a+b \text {arcsinh}(c+d x))^2}-\frac {\sqrt {(c+d x)^2+1} (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^3}\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {e \left (\frac {2 \left (-\frac {(c+d x)^2}{2 b (a+b \text {arcsinh}(c+d x))^2}+\frac {-\frac {(c+d x) \sqrt {(c+d x)^2+1}}{b (a+b \text {arcsinh}(c+d x))}+\frac {\cosh \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 i (a+b \text {arcsinh}(c+d x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))-\sinh \left (\frac {2 a}{b}\right ) \int -\frac {i \sin \left (\frac {2 i (a+b \text {arcsinh}(c+d x))}{b}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))}{b^2}}{b}\right )}{3 b}-\frac {1}{6 b^2 (a+b \text {arcsinh}(c+d x))^2}-\frac {\sqrt {(c+d x)^2+1} (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^3}\right )}{d}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {e \left (\frac {2 \left (-\frac {(c+d x)^2}{2 b (a+b \text {arcsinh}(c+d x))^2}+\frac {-\frac {(c+d x) \sqrt {(c+d x)^2+1}}{b (a+b \text {arcsinh}(c+d x))}+\frac {i \sinh \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 i (a+b \text {arcsinh}(c+d x))}{b}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))+\cosh \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 i (a+b \text {arcsinh}(c+d x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))}{b^2}}{b}\right )}{3 b}-\frac {1}{6 b^2 (a+b \text {arcsinh}(c+d x))^2}-\frac {\sqrt {(c+d x)^2+1} (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^3}\right )}{d}\)

\(\Big \downarrow \) 3779

\(\displaystyle \frac {e \left (\frac {2 \left (-\frac {(c+d x)^2}{2 b (a+b \text {arcsinh}(c+d x))^2}+\frac {-\frac {(c+d x) \sqrt {(c+d x)^2+1}}{b (a+b \text {arcsinh}(c+d x))}+\frac {-\sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )+\cosh \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 i (a+b \text {arcsinh}(c+d x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arcsinh}(c+d x)}d(a+b \text {arcsinh}(c+d x))}{b^2}}{b}\right )}{3 b}-\frac {1}{6 b^2 (a+b \text {arcsinh}(c+d x))^2}-\frac {\sqrt {(c+d x)^2+1} (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^3}\right )}{d}\)

\(\Big \downarrow \) 3782

\(\displaystyle \frac {e \left (\frac {2 \left (\frac {\frac {\cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )-\sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{b^2}-\frac {(c+d x) \sqrt {(c+d x)^2+1}}{b (a+b \text {arcsinh}(c+d x))}}{b}-\frac {(c+d x)^2}{2 b (a+b \text {arcsinh}(c+d x))^2}\right )}{3 b}-\frac {1}{6 b^2 (a+b \text {arcsinh}(c+d x))^2}-\frac {\sqrt {(c+d x)^2+1} (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^3}\right )}{d}\)

input
Int[(c*e + d*e*x)/(a + b*ArcSinh[c + d*x])^4,x]
 
output
(e*(-1/3*((c + d*x)*Sqrt[1 + (c + d*x)^2])/(b*(a + b*ArcSinh[c + d*x])^3) 
- 1/(6*b^2*(a + b*ArcSinh[c + d*x])^2) + (2*(-1/2*(c + d*x)^2/(b*(a + b*Ar 
cSinh[c + d*x])^2) + (-(((c + d*x)*Sqrt[1 + (c + d*x)^2])/(b*(a + b*ArcSin 
h[c + d*x]))) + (Cosh[(2*a)/b]*CoshIntegral[(2*(a + b*ArcSinh[c + d*x]))/b 
] - Sinh[(2*a)/b]*SinhIntegral[(2*(a + b*ArcSinh[c + d*x]))/b])/b^2)/b))/( 
3*b)))/d
 

3.2.77.3.1 Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3779
Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbo 
l] :> Simp[I*(SinhIntegral[c*f*(fz/d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f 
, fz}, x] && EqQ[d*e - c*f*fz*I, 0]
 

rule 3782
Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbo 
l] :> Simp[CoshIntegral[c*f*(fz/d) + f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz 
}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]
 

rule 3784
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[Cos[(d* 
e - c*f)/d]   Int[Sin[c*(f/d) + f*x]/(c + d*x), x], x] + Simp[Sin[(d*e - c* 
f)/d]   Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f}, x] 
&& NeQ[d*e - c*f, 0]
 

rule 6193
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[ 
x^m*Sqrt[1 + c^2*x^2]*((a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1))), x] - Si 
mp[1/(b^2*c^(m + 1)*(n + 1))   Subst[Int[ExpandTrigReduce[x^(n + 1), Sinh[- 
a/b + x/b]^(m - 1)*(m + (m + 1)*Sinh[-a/b + x/b]^2), x], x], x, a + b*ArcSi 
nh[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, - 
1]
 

rule 6194
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[ 
x^m*Sqrt[1 + c^2*x^2]*((a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1))), x] + (- 
Simp[c*((m + 1)/(b*(n + 1)))   Int[x^(m + 1)*((a + b*ArcSinh[c*x])^(n + 1)/ 
Sqrt[1 + c^2*x^2]), x], x] - Simp[m/(b*c*(n + 1))   Int[x^(m - 1)*((a + b*A 
rcSinh[c*x])^(n + 1)/Sqrt[1 + c^2*x^2]), x], x]) /; FreeQ[{a, b, c}, x] && 
IGtQ[m, 0] && LtQ[n, -2]
 

rule 6198
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_ 
Symbol] :> Simp[(1/(b*c*(n + 1)))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]*( 
a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c 
^2*d] && NeQ[n, -1]
 

rule 6233
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) 
 + (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x)^m/(b*c*(n + 1)))*Simp[Sqrt[1 + c 
^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])^(n + 1), x] - Simp[f*(m/(b*c* 
(n + 1)))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]   Int[(f*x)^(m - 1)*(a + 
b*ArcSinh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e 
, c^2*d] && LtQ[n, -1]
 

rule 6274
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^( 
m_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b* 
ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
3.2.77.4 Maple [A] (verified)

Time = 0.08 (sec) , antiderivative size = 333, normalized size of antiderivative = 1.63

method result size
derivativedivides \(\frac {\frac {\left (-2 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}+2 \left (d x +c \right )^{2}+1\right ) e \left (2 b^{2} \operatorname {arcsinh}\left (d x +c \right )^{2}+4 a b \,\operatorname {arcsinh}\left (d x +c \right )-b^{2} \operatorname {arcsinh}\left (d x +c \right )+2 a^{2}-a b +b^{2}\right )}{12 b^{3} \left (b^{3} \operatorname {arcsinh}\left (d x +c \right )^{3}+3 a \,b^{2} \operatorname {arcsinh}\left (d x +c \right )^{2}+3 a^{2} b \,\operatorname {arcsinh}\left (d x +c \right )+a^{3}\right )}-\frac {e \,{\mathrm e}^{\frac {2 a}{b}} \operatorname {Ei}_{1}\left (2 \,\operatorname {arcsinh}\left (d x +c \right )+\frac {2 a}{b}\right )}{3 b^{4}}-\frac {e \left (2 \left (d x +c \right )^{2}+1+2 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}\right )}{12 b \left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )^{3}}-\frac {e \left (2 \left (d x +c \right )^{2}+1+2 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}\right )}{12 b^{2} \left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )^{2}}-\frac {e \left (2 \left (d x +c \right )^{2}+1+2 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}\right )}{6 b^{3} \left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )}-\frac {e \,{\mathrm e}^{-\frac {2 a}{b}} \operatorname {Ei}_{1}\left (-2 \,\operatorname {arcsinh}\left (d x +c \right )-\frac {2 a}{b}\right )}{3 b^{4}}}{d}\) \(333\)
default \(\frac {\frac {\left (-2 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}+2 \left (d x +c \right )^{2}+1\right ) e \left (2 b^{2} \operatorname {arcsinh}\left (d x +c \right )^{2}+4 a b \,\operatorname {arcsinh}\left (d x +c \right )-b^{2} \operatorname {arcsinh}\left (d x +c \right )+2 a^{2}-a b +b^{2}\right )}{12 b^{3} \left (b^{3} \operatorname {arcsinh}\left (d x +c \right )^{3}+3 a \,b^{2} \operatorname {arcsinh}\left (d x +c \right )^{2}+3 a^{2} b \,\operatorname {arcsinh}\left (d x +c \right )+a^{3}\right )}-\frac {e \,{\mathrm e}^{\frac {2 a}{b}} \operatorname {Ei}_{1}\left (2 \,\operatorname {arcsinh}\left (d x +c \right )+\frac {2 a}{b}\right )}{3 b^{4}}-\frac {e \left (2 \left (d x +c \right )^{2}+1+2 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}\right )}{12 b \left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )^{3}}-\frac {e \left (2 \left (d x +c \right )^{2}+1+2 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}\right )}{12 b^{2} \left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )^{2}}-\frac {e \left (2 \left (d x +c \right )^{2}+1+2 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}\right )}{6 b^{3} \left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )}-\frac {e \,{\mathrm e}^{-\frac {2 a}{b}} \operatorname {Ei}_{1}\left (-2 \,\operatorname {arcsinh}\left (d x +c \right )-\frac {2 a}{b}\right )}{3 b^{4}}}{d}\) \(333\)

input
int((d*e*x+c*e)/(a+b*arcsinh(d*x+c))^4,x,method=_RETURNVERBOSE)
 
output
1/d*(1/12*(-2*(d*x+c)*(1+(d*x+c)^2)^(1/2)+2*(d*x+c)^2+1)*e*(2*b^2*arcsinh( 
d*x+c)^2+4*a*b*arcsinh(d*x+c)-b^2*arcsinh(d*x+c)+2*a^2-a*b+b^2)/b^3/(b^3*a 
rcsinh(d*x+c)^3+3*a*b^2*arcsinh(d*x+c)^2+3*a^2*b*arcsinh(d*x+c)+a^3)-1/3*e 
/b^4*exp(2*a/b)*Ei(1,2*arcsinh(d*x+c)+2*a/b)-1/12/b*e*(2*(d*x+c)^2+1+2*(d* 
x+c)*(1+(d*x+c)^2)^(1/2))/(a+b*arcsinh(d*x+c))^3-1/12/b^2*e*(2*(d*x+c)^2+1 
+2*(d*x+c)*(1+(d*x+c)^2)^(1/2))/(a+b*arcsinh(d*x+c))^2-1/6/b^3*e*(2*(d*x+c 
)^2+1+2*(d*x+c)*(1+(d*x+c)^2)^(1/2))/(a+b*arcsinh(d*x+c))-1/3/b^4*e*exp(-2 
*a/b)*Ei(1,-2*arcsinh(d*x+c)-2*a/b))
 
3.2.77.5 Fricas [F]

\[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^4} \, dx=\int { \frac {d e x + c e}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{4}} \,d x } \]

input
integrate((d*e*x+c*e)/(a+b*arcsinh(d*x+c))^4,x, algorithm="fricas")
 
output
integral((d*e*x + c*e)/(b^4*arcsinh(d*x + c)^4 + 4*a*b^3*arcsinh(d*x + c)^ 
3 + 6*a^2*b^2*arcsinh(d*x + c)^2 + 4*a^3*b*arcsinh(d*x + c) + a^4), x)
 
3.2.77.6 Sympy [F]

\[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^4} \, dx=e \left (\int \frac {c}{a^{4} + 4 a^{3} b \operatorname {asinh}{\left (c + d x \right )} + 6 a^{2} b^{2} \operatorname {asinh}^{2}{\left (c + d x \right )} + 4 a b^{3} \operatorname {asinh}^{3}{\left (c + d x \right )} + b^{4} \operatorname {asinh}^{4}{\left (c + d x \right )}}\, dx + \int \frac {d x}{a^{4} + 4 a^{3} b \operatorname {asinh}{\left (c + d x \right )} + 6 a^{2} b^{2} \operatorname {asinh}^{2}{\left (c + d x \right )} + 4 a b^{3} \operatorname {asinh}^{3}{\left (c + d x \right )} + b^{4} \operatorname {asinh}^{4}{\left (c + d x \right )}}\, dx\right ) \]

input
integrate((d*e*x+c*e)/(a+b*asinh(d*x+c))**4,x)
 
output
e*(Integral(c/(a**4 + 4*a**3*b*asinh(c + d*x) + 6*a**2*b**2*asinh(c + d*x) 
**2 + 4*a*b**3*asinh(c + d*x)**3 + b**4*asinh(c + d*x)**4), x) + Integral( 
d*x/(a**4 + 4*a**3*b*asinh(c + d*x) + 6*a**2*b**2*asinh(c + d*x)**2 + 4*a* 
b**3*asinh(c + d*x)**3 + b**4*asinh(c + d*x)**4), x))
 
3.2.77.7 Maxima [F(-1)]

Timed out. \[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^4} \, dx=\text {Timed out} \]

input
integrate((d*e*x+c*e)/(a+b*arcsinh(d*x+c))^4,x, algorithm="maxima")
 
output
Timed out
 
3.2.77.8 Giac [F]

\[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^4} \, dx=\int { \frac {d e x + c e}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{4}} \,d x } \]

input
integrate((d*e*x+c*e)/(a+b*arcsinh(d*x+c))^4,x, algorithm="giac")
 
output
integrate((d*e*x + c*e)/(b*arcsinh(d*x + c) + a)^4, x)
 
3.2.77.9 Mupad [F(-1)]

Timed out. \[ \int \frac {c e+d e x}{(a+b \text {arcsinh}(c+d x))^4} \, dx=\int \frac {c\,e+d\,e\,x}{{\left (a+b\,\mathrm {asinh}\left (c+d\,x\right )\right )}^4} \,d x \]

input
int((c*e + d*e*x)/(a + b*asinh(c + d*x))^4,x)
 
output
int((c*e + d*e*x)/(a + b*asinh(c + d*x))^4, x)