3.3.12 \(\int \frac {(c e+d e x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx\) [212]

3.3.12.1 Optimal result
3.3.12.2 Mathematica [A] (verified)
3.3.12.3 Rubi [A] (verified)
3.3.12.4 Maple [F]
3.3.12.5 Fricas [F(-2)]
3.3.12.6 Sympy [F]
3.3.12.7 Maxima [F]
3.3.12.8 Giac [F]
3.3.12.9 Mupad [F(-1)]

3.3.12.1 Optimal result

Integrand size = 25, antiderivative size = 255 \[ \int \frac {(c e+d e x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=-\frac {2 e^2 (c+d x)^2 \sqrt {1+(c+d x)^2}}{b d \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {e^2 e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}-\frac {e^2 e^{\frac {3 a}{b}} \sqrt {3 \pi } \text {erf}\left (\frac {\sqrt {3} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}-\frac {e^2 e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}+\frac {e^2 e^{-\frac {3 a}{b}} \sqrt {3 \pi } \text {erfi}\left (\frac {\sqrt {3} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d} \]

output
1/4*e^2*exp(a/b)*erf((a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/b^(3/2)/ 
d-1/4*e^2*erfi((a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/b^(3/2)/d/exp( 
a/b)-1/4*e^2*exp(3*a/b)*erf(3^(1/2)*(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*3^ 
(1/2)*Pi^(1/2)/b^(3/2)/d+1/4*e^2*erfi(3^(1/2)*(a+b*arcsinh(d*x+c))^(1/2)/b 
^(1/2))*3^(1/2)*Pi^(1/2)/b^(3/2)/d/exp(3*a/b)-2*e^2*(d*x+c)^2*(1+(d*x+c)^2 
)^(1/2)/b/d/(a+b*arcsinh(d*x+c))^(1/2)
 
3.3.12.2 Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 327, normalized size of antiderivative = 1.28 \[ \int \frac {(c e+d e x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=\frac {e^2 e^{-3 \left (\frac {a}{b}+\text {arcsinh}(c+d x)\right )} \left (-e^{\frac {3 a}{b}}+e^{\frac {3 a}{b}+2 \text {arcsinh}(c+d x)}+e^{\frac {3 a}{b}+4 \text {arcsinh}(c+d x)}-e^{\frac {3 a}{b}+6 \text {arcsinh}(c+d x)}-e^{\frac {4 a}{b}+3 \text {arcsinh}(c+d x)} \sqrt {\frac {a}{b}+\text {arcsinh}(c+d x)} \Gamma \left (\frac {1}{2},\frac {a}{b}+\text {arcsinh}(c+d x)\right )+\sqrt {3} e^{3 \text {arcsinh}(c+d x)} \sqrt {-\frac {a+b \text {arcsinh}(c+d x)}{b}} \Gamma \left (\frac {1}{2},-\frac {3 (a+b \text {arcsinh}(c+d x))}{b}\right )-e^{\frac {2 a}{b}+3 \text {arcsinh}(c+d x)} \sqrt {-\frac {a+b \text {arcsinh}(c+d x)}{b}} \Gamma \left (\frac {1}{2},-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )+\sqrt {3} e^{\frac {6 a}{b}+3 \text {arcsinh}(c+d x)} \sqrt {\frac {a}{b}+\text {arcsinh}(c+d x)} \Gamma \left (\frac {1}{2},\frac {3 (a+b \text {arcsinh}(c+d x))}{b}\right )\right )}{4 b d \sqrt {a+b \text {arcsinh}(c+d x)}} \]

input
Integrate[(c*e + d*e*x)^2/(a + b*ArcSinh[c + d*x])^(3/2),x]
 
output
(e^2*(-E^((3*a)/b) + E^((3*a)/b + 2*ArcSinh[c + d*x]) + E^((3*a)/b + 4*Arc 
Sinh[c + d*x]) - E^((3*a)/b + 6*ArcSinh[c + d*x]) - E^((4*a)/b + 3*ArcSinh 
[c + d*x])*Sqrt[a/b + ArcSinh[c + d*x]]*Gamma[1/2, a/b + ArcSinh[c + d*x]] 
 + Sqrt[3]*E^(3*ArcSinh[c + d*x])*Sqrt[-((a + b*ArcSinh[c + d*x])/b)]*Gamm 
a[1/2, (-3*(a + b*ArcSinh[c + d*x]))/b] - E^((2*a)/b + 3*ArcSinh[c + d*x]) 
*Sqrt[-((a + b*ArcSinh[c + d*x])/b)]*Gamma[1/2, -((a + b*ArcSinh[c + d*x]) 
/b)] + Sqrt[3]*E^((6*a)/b + 3*ArcSinh[c + d*x])*Sqrt[a/b + ArcSinh[c + d*x 
]]*Gamma[1/2, (3*(a + b*ArcSinh[c + d*x]))/b]))/(4*b*d*E^(3*(a/b + ArcSinh 
[c + d*x]))*Sqrt[a + b*ArcSinh[c + d*x]])
 
3.3.12.3 Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 238, normalized size of antiderivative = 0.93, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {6274, 27, 6193, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c e+d e x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 6274

\(\displaystyle \frac {\int \frac {e^2 (c+d x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}}d(c+d x)}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e^2 \int \frac {(c+d x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}}d(c+d x)}{d}\)

\(\Big \downarrow \) 6193

\(\displaystyle \frac {e^2 \left (\frac {2 \int \left (\frac {\sinh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )}{4 \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {3 \sinh \left (\frac {3 a}{b}-\frac {3 (a+b \text {arcsinh}(c+d x))}{b}\right )}{4 \sqrt {a+b \text {arcsinh}(c+d x)}}\right )d(a+b \text {arcsinh}(c+d x))}{b^2}-\frac {2 (c+d x)^2 \sqrt {(c+d x)^2+1}}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {e^2 \left (\frac {2 \left (\frac {1}{8} \sqrt {\pi } \sqrt {b} e^{a/b} \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )-\frac {1}{8} \sqrt {3 \pi } \sqrt {b} e^{\frac {3 a}{b}} \text {erf}\left (\frac {\sqrt {3} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )-\frac {1}{8} \sqrt {\pi } \sqrt {b} e^{-\frac {a}{b}} \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{8} \sqrt {3 \pi } \sqrt {b} e^{-\frac {3 a}{b}} \text {erfi}\left (\frac {\sqrt {3} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )\right )}{b^2}-\frac {2 (c+d x)^2 \sqrt {(c+d x)^2+1}}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{d}\)

input
Int[(c*e + d*e*x)^2/(a + b*ArcSinh[c + d*x])^(3/2),x]
 
output
(e^2*((-2*(c + d*x)^2*Sqrt[1 + (c + d*x)^2])/(b*Sqrt[a + b*ArcSinh[c + d*x 
]]) + (2*((Sqrt[b]*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[ 
b]])/8 - (Sqrt[b]*E^((3*a)/b)*Sqrt[3*Pi]*Erf[(Sqrt[3]*Sqrt[a + b*ArcSinh[c 
 + d*x]])/Sqrt[b]])/8 - (Sqrt[b]*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x] 
]/Sqrt[b]])/(8*E^(a/b)) + (Sqrt[b]*Sqrt[3*Pi]*Erfi[(Sqrt[3]*Sqrt[a + b*Arc 
Sinh[c + d*x]])/Sqrt[b]])/(8*E^((3*a)/b))))/b^2))/d
 

3.3.12.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6193
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[ 
x^m*Sqrt[1 + c^2*x^2]*((a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1))), x] - Si 
mp[1/(b^2*c^(m + 1)*(n + 1))   Subst[Int[ExpandTrigReduce[x^(n + 1), Sinh[- 
a/b + x/b]^(m - 1)*(m + (m + 1)*Sinh[-a/b + x/b]^2), x], x], x, a + b*ArcSi 
nh[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, - 
1]
 

rule 6274
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^( 
m_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b* 
ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
3.3.12.4 Maple [F]

\[\int \frac {\left (d e x +c e \right )^{2}}{\left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )^{\frac {3}{2}}}d x\]

input
int((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(3/2),x)
 
output
int((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(3/2),x)
 
3.3.12.5 Fricas [F(-2)]

Exception generated. \[ \int \frac {(c e+d e x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(3/2),x, algorithm="fricas")
 
output
Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (constant residues)
 
3.3.12.6 Sympy [F]

\[ \int \frac {(c e+d e x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=e^{2} \left (\int \frac {c^{2}}{a \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} \operatorname {asinh}{\left (c + d x \right )}}\, dx + \int \frac {d^{2} x^{2}}{a \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} \operatorname {asinh}{\left (c + d x \right )}}\, dx + \int \frac {2 c d x}{a \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} \operatorname {asinh}{\left (c + d x \right )}}\, dx\right ) \]

input
integrate((d*e*x+c*e)**2/(a+b*asinh(d*x+c))**(3/2),x)
 
output
e**2*(Integral(c**2/(a*sqrt(a + b*asinh(c + d*x)) + b*sqrt(a + b*asinh(c + 
 d*x))*asinh(c + d*x)), x) + Integral(d**2*x**2/(a*sqrt(a + b*asinh(c + d* 
x)) + b*sqrt(a + b*asinh(c + d*x))*asinh(c + d*x)), x) + Integral(2*c*d*x/ 
(a*sqrt(a + b*asinh(c + d*x)) + b*sqrt(a + b*asinh(c + d*x))*asinh(c + d*x 
)), x))
 
3.3.12.7 Maxima [F]

\[ \int \frac {(c e+d e x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=\int { \frac {{\left (d e x + c e\right )}^{2}}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(3/2),x, algorithm="maxima")
 
output
integrate((d*e*x + c*e)^2/(b*arcsinh(d*x + c) + a)^(3/2), x)
 
3.3.12.8 Giac [F]

\[ \int \frac {(c e+d e x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=\int { \frac {{\left (d e x + c e\right )}^{2}}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate((d*e*x + c*e)^2/(b*arcsinh(d*x + c) + a)^(3/2), x)
 
3.3.12.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(c e+d e x)^2}{(a+b \text {arcsinh}(c+d x))^{3/2}} \, dx=\int \frac {{\left (c\,e+d\,e\,x\right )}^2}{{\left (a+b\,\mathrm {asinh}\left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int((c*e + d*e*x)^2/(a + b*asinh(c + d*x))^(3/2),x)
 
output
int((c*e + d*e*x)^2/(a + b*asinh(c + d*x))^(3/2), x)