3.3.17 \(\int \frac {(c e+d e x)^3}{(a+b \text {arcsinh}(c+d x))^{5/2}} \, dx\) [217]

3.3.17.1 Optimal result
3.3.17.2 Mathematica [A] (verified)
3.3.17.3 Rubi [C] (verified)
3.3.17.4 Maple [F]
3.3.17.5 Fricas [F(-2)]
3.3.17.6 Sympy [F]
3.3.17.7 Maxima [F]
3.3.17.8 Giac [F]
3.3.17.9 Mupad [F(-1)]

3.3.17.1 Optimal result

Integrand size = 25, antiderivative size = 326 \[ \int \frac {(c e+d e x)^3}{(a+b \text {arcsinh}(c+d x))^{5/2}} \, dx=-\frac {2 e^3 (c+d x)^3 \sqrt {1+(c+d x)^2}}{3 b d (a+b \text {arcsinh}(c+d x))^{3/2}}-\frac {4 e^3 (c+d x)^2}{b^2 d \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {16 e^3 (c+d x)^4}{3 b^2 d \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {2 e^3 e^{\frac {4 a}{b}} \sqrt {\pi } \text {erf}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{3 b^{5/2} d}+\frac {e^3 e^{\frac {2 a}{b}} \sqrt {2 \pi } \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{3 b^{5/2} d}+\frac {2 e^3 e^{-\frac {4 a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{3 b^{5/2} d}-\frac {e^3 e^{-\frac {2 a}{b}} \sqrt {2 \pi } \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{3 b^{5/2} d} \]

output
-2/3*e^3*exp(4*a/b)*erf(2*(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/b^( 
5/2)/d+2/3*e^3*erfi(2*(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/b^(5/2) 
/d/exp(4*a/b)+1/3*e^3*exp(2*a/b)*erf(2^(1/2)*(a+b*arcsinh(d*x+c))^(1/2)/b^ 
(1/2))*2^(1/2)*Pi^(1/2)/b^(5/2)/d-1/3*e^3*erfi(2^(1/2)*(a+b*arcsinh(d*x+c) 
)^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(5/2)/d/exp(2*a/b)-2/3*e^3*(d*x+c)^3*( 
1+(d*x+c)^2)^(1/2)/b/d/(a+b*arcsinh(d*x+c))^(3/2)-4*e^3*(d*x+c)^2/b^2/d/(a 
+b*arcsinh(d*x+c))^(1/2)-16/3*e^3*(d*x+c)^4/b^2/d/(a+b*arcsinh(d*x+c))^(1/ 
2)
 
3.3.17.2 Mathematica [A] (verified)

Time = 1.28 (sec) , antiderivative size = 390, normalized size of antiderivative = 1.20 \[ \int \frac {(c e+d e x)^3}{(a+b \text {arcsinh}(c+d x))^{5/2}} \, dx=\frac {e^3 e^{-4 \left (\frac {a}{b}+\text {arcsinh}(c+d x)\right )} \left (-8 b e^{4 \text {arcsinh}(c+d x)} \left (-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )^{3/2} \Gamma \left (\frac {1}{2},-\frac {4 (a+b \text {arcsinh}(c+d x))}{b}\right )+4 \sqrt {2} b e^{\frac {2 a}{b}+4 \text {arcsinh}(c+d x)} \left (-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )^{3/2} \Gamma \left (\frac {1}{2},-\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )+\frac {1}{2} e^{\frac {4 a}{b}} \left (-\left (-1+e^{2 \text {arcsinh}(c+d x)}\right )^2 \left (b \left (-1+e^{4 \text {arcsinh}(c+d x)}\right )+8 a \left (1+e^{2 \text {arcsinh}(c+d x)}+e^{4 \text {arcsinh}(c+d x)}\right )+8 b \left (1+e^{2 \text {arcsinh}(c+d x)}+e^{4 \text {arcsinh}(c+d x)}\right ) \text {arcsinh}(c+d x)\right )-8 \sqrt {2} e^{\frac {2 a}{b}+4 \text {arcsinh}(c+d x)} \sqrt {\frac {a}{b}+\text {arcsinh}(c+d x)} (a+b \text {arcsinh}(c+d x)) \Gamma \left (\frac {1}{2},\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )+16 e^{4 \left (\frac {a}{b}+\text {arcsinh}(c+d x)\right )} \sqrt {\frac {a}{b}+\text {arcsinh}(c+d x)} (a+b \text {arcsinh}(c+d x)) \Gamma \left (\frac {1}{2},\frac {4 (a+b \text {arcsinh}(c+d x))}{b}\right )\right )\right )}{12 b^2 d (a+b \text {arcsinh}(c+d x))^{3/2}} \]

input
Integrate[(c*e + d*e*x)^3/(a + b*ArcSinh[c + d*x])^(5/2),x]
 
output
(e^3*(-8*b*E^(4*ArcSinh[c + d*x])*(-((a + b*ArcSinh[c + d*x])/b))^(3/2)*Ga 
mma[1/2, (-4*(a + b*ArcSinh[c + d*x]))/b] + 4*Sqrt[2]*b*E^((2*a)/b + 4*Arc 
Sinh[c + d*x])*(-((a + b*ArcSinh[c + d*x])/b))^(3/2)*Gamma[1/2, (-2*(a + b 
*ArcSinh[c + d*x]))/b] + (E^((4*a)/b)*(-((-1 + E^(2*ArcSinh[c + d*x]))^2*( 
b*(-1 + E^(4*ArcSinh[c + d*x])) + 8*a*(1 + E^(2*ArcSinh[c + d*x]) + E^(4*A 
rcSinh[c + d*x])) + 8*b*(1 + E^(2*ArcSinh[c + d*x]) + E^(4*ArcSinh[c + d*x 
]))*ArcSinh[c + d*x])) - 8*Sqrt[2]*E^((2*a)/b + 4*ArcSinh[c + d*x])*Sqrt[a 
/b + ArcSinh[c + d*x]]*(a + b*ArcSinh[c + d*x])*Gamma[1/2, (2*(a + b*ArcSi 
nh[c + d*x]))/b] + 16*E^(4*(a/b + ArcSinh[c + d*x]))*Sqrt[a/b + ArcSinh[c 
+ d*x]]*(a + b*ArcSinh[c + d*x])*Gamma[1/2, (4*(a + b*ArcSinh[c + d*x]))/b 
]))/2))/(12*b^2*d*E^(4*(a/b + ArcSinh[c + d*x]))*(a + b*ArcSinh[c + d*x])^ 
(3/2))
 
3.3.17.3 Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 1.73 (sec) , antiderivative size = 429, normalized size of antiderivative = 1.32, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {6274, 27, 6194, 6233, 6195, 25, 5971, 27, 2009, 3042, 26, 3789, 2611, 2633, 2634}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c e+d e x)^3}{(a+b \text {arcsinh}(c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 6274

\(\displaystyle \frac {\int \frac {e^3 (c+d x)^3}{(a+b \text {arcsinh}(c+d x))^{5/2}}d(c+d x)}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e^3 \int \frac {(c+d x)^3}{(a+b \text {arcsinh}(c+d x))^{5/2}}d(c+d x)}{d}\)

\(\Big \downarrow \) 6194

\(\displaystyle \frac {e^3 \left (\frac {2 \int \frac {(c+d x)^2}{\sqrt {(c+d x)^2+1} (a+b \text {arcsinh}(c+d x))^{3/2}}d(c+d x)}{b}+\frac {8 \int \frac {(c+d x)^4}{\sqrt {(c+d x)^2+1} (a+b \text {arcsinh}(c+d x))^{3/2}}d(c+d x)}{3 b}-\frac {2 \sqrt {(c+d x)^2+1} (c+d x)^3}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 6233

\(\displaystyle \frac {e^3 \left (\frac {2 \left (\frac {4 \int \frac {c+d x}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(c+d x)}{b}-\frac {2 (c+d x)^2}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{b}+\frac {8 \left (\frac {8 \int \frac {(c+d x)^3}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(c+d x)}{b}-\frac {2 (c+d x)^4}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{3 b}-\frac {2 \sqrt {(c+d x)^2+1} (c+d x)^3}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 6195

\(\displaystyle \frac {e^3 \left (\frac {8 \left (\frac {8 \int -\frac {\cosh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right ) \sinh ^3\left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))}{b^2}-\frac {2 (c+d x)^4}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{3 b}+\frac {2 \left (\frac {4 \int -\frac {\cosh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right ) \sinh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))}{b^2}-\frac {2 (c+d x)^2}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{b}-\frac {2 \sqrt {(c+d x)^2+1} (c+d x)^3}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {e^3 \left (\frac {8 \left (-\frac {8 \int \frac {\cosh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right ) \sinh ^3\left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))}{b^2}-\frac {2 (c+d x)^4}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{3 b}+\frac {2 \left (-\frac {4 \int \frac {\cosh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right ) \sinh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))}{b^2}-\frac {2 (c+d x)^2}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{b}-\frac {2 \sqrt {(c+d x)^2+1} (c+d x)^3}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 5971

\(\displaystyle \frac {e^3 \left (\frac {2 \left (-\frac {4 \int \frac {\sinh \left (\frac {2 a}{b}-\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{2 \sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))}{b^2}-\frac {2 (c+d x)^2}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{b}+\frac {8 \left (-\frac {8 \int \left (\frac {\sinh \left (\frac {4 a}{b}-\frac {4 (a+b \text {arcsinh}(c+d x))}{b}\right )}{8 \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {\sinh \left (\frac {2 a}{b}-\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{4 \sqrt {a+b \text {arcsinh}(c+d x)}}\right )d(a+b \text {arcsinh}(c+d x))}{b^2}-\frac {2 (c+d x)^4}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{3 b}-\frac {2 \sqrt {(c+d x)^2+1} (c+d x)^3}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e^3 \left (\frac {2 \left (-\frac {2 \int \frac {\sinh \left (\frac {2 a}{b}-\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))}{b^2}-\frac {2 (c+d x)^2}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{b}+\frac {8 \left (-\frac {8 \int \left (\frac {\sinh \left (\frac {4 a}{b}-\frac {4 (a+b \text {arcsinh}(c+d x))}{b}\right )}{8 \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {\sinh \left (\frac {2 a}{b}-\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{4 \sqrt {a+b \text {arcsinh}(c+d x)}}\right )d(a+b \text {arcsinh}(c+d x))}{b^2}-\frac {2 (c+d x)^4}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{3 b}-\frac {2 \sqrt {(c+d x)^2+1} (c+d x)^3}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {e^3 \left (\frac {2 \left (-\frac {2 \int \frac {\sinh \left (\frac {2 a}{b}-\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))}{b^2}-\frac {2 (c+d x)^2}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{b}+\frac {8 \left (\frac {8 \left (-\frac {1}{32} \sqrt {\pi } \sqrt {b} e^{\frac {4 a}{b}} \text {erf}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{8} \sqrt {\frac {\pi }{2}} \sqrt {b} e^{\frac {2 a}{b}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{32} \sqrt {\pi } \sqrt {b} e^{-\frac {4 a}{b}} \text {erfi}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )-\frac {1}{8} \sqrt {\frac {\pi }{2}} \sqrt {b} e^{-\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )\right )}{b^2}-\frac {2 (c+d x)^4}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{3 b}-\frac {2 \sqrt {(c+d x)^2+1} (c+d x)^3}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {e^3 \left (\frac {2 \left (-\frac {2 (c+d x)^2}{b \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {2 \int -\frac {i \sin \left (\frac {2 i a}{b}-\frac {2 i (a+b \text {arcsinh}(c+d x))}{b}\right )}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))}{b^2}\right )}{b}+\frac {8 \left (\frac {8 \left (-\frac {1}{32} \sqrt {\pi } \sqrt {b} e^{\frac {4 a}{b}} \text {erf}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{8} \sqrt {\frac {\pi }{2}} \sqrt {b} e^{\frac {2 a}{b}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{32} \sqrt {\pi } \sqrt {b} e^{-\frac {4 a}{b}} \text {erfi}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )-\frac {1}{8} \sqrt {\frac {\pi }{2}} \sqrt {b} e^{-\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )\right )}{b^2}-\frac {2 (c+d x)^4}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{3 b}-\frac {2 \sqrt {(c+d x)^2+1} (c+d x)^3}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {e^3 \left (\frac {2 \left (-\frac {2 (c+d x)^2}{b \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {2 i \int \frac {\sin \left (\frac {2 i a}{b}-\frac {2 i (a+b \text {arcsinh}(c+d x))}{b}\right )}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))}{b^2}\right )}{b}+\frac {8 \left (\frac {8 \left (-\frac {1}{32} \sqrt {\pi } \sqrt {b} e^{\frac {4 a}{b}} \text {erf}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{8} \sqrt {\frac {\pi }{2}} \sqrt {b} e^{\frac {2 a}{b}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{32} \sqrt {\pi } \sqrt {b} e^{-\frac {4 a}{b}} \text {erfi}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )-\frac {1}{8} \sqrt {\frac {\pi }{2}} \sqrt {b} e^{-\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )\right )}{b^2}-\frac {2 (c+d x)^4}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{3 b}-\frac {2 \sqrt {(c+d x)^2+1} (c+d x)^3}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 3789

\(\displaystyle \frac {e^3 \left (\frac {2 \left (-\frac {2 (c+d x)^2}{b \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {2 i \left (\frac {1}{2} i \int \frac {e^{\frac {2 (a-c-d x)}{b}}}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))-\frac {1}{2} i \int \frac {e^{-\frac {2 (a-c-d x)}{b}}}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))\right )}{b^2}\right )}{b}+\frac {8 \left (\frac {8 \left (-\frac {1}{32} \sqrt {\pi } \sqrt {b} e^{\frac {4 a}{b}} \text {erf}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{8} \sqrt {\frac {\pi }{2}} \sqrt {b} e^{\frac {2 a}{b}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{32} \sqrt {\pi } \sqrt {b} e^{-\frac {4 a}{b}} \text {erfi}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )-\frac {1}{8} \sqrt {\frac {\pi }{2}} \sqrt {b} e^{-\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )\right )}{b^2}-\frac {2 (c+d x)^4}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{3 b}-\frac {2 \sqrt {(c+d x)^2+1} (c+d x)^3}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 2611

\(\displaystyle \frac {e^3 \left (\frac {2 \left (-\frac {2 (c+d x)^2}{b \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {2 i \left (i \int e^{\frac {2 a}{b}-\frac {2 (a+b \text {arcsinh}(c+d x))}{b}}d\sqrt {a+b \text {arcsinh}(c+d x)}-i \int e^{\frac {2 (a+b \text {arcsinh}(c+d x))}{b}-\frac {2 a}{b}}d\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{b^2}\right )}{b}+\frac {8 \left (\frac {8 \left (-\frac {1}{32} \sqrt {\pi } \sqrt {b} e^{\frac {4 a}{b}} \text {erf}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{8} \sqrt {\frac {\pi }{2}} \sqrt {b} e^{\frac {2 a}{b}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{32} \sqrt {\pi } \sqrt {b} e^{-\frac {4 a}{b}} \text {erfi}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )-\frac {1}{8} \sqrt {\frac {\pi }{2}} \sqrt {b} e^{-\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )\right )}{b^2}-\frac {2 (c+d x)^4}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{3 b}-\frac {2 \sqrt {(c+d x)^2+1} (c+d x)^3}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 2633

\(\displaystyle \frac {e^3 \left (\frac {2 \left (-\frac {2 (c+d x)^2}{b \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {2 i \left (i \int e^{\frac {2 a}{b}-\frac {2 (a+b \text {arcsinh}(c+d x))}{b}}d\sqrt {a+b \text {arcsinh}(c+d x)}-\frac {1}{2} i \sqrt {\frac {\pi }{2}} \sqrt {b} e^{-\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )\right )}{b^2}\right )}{b}+\frac {8 \left (\frac {8 \left (-\frac {1}{32} \sqrt {\pi } \sqrt {b} e^{\frac {4 a}{b}} \text {erf}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{8} \sqrt {\frac {\pi }{2}} \sqrt {b} e^{\frac {2 a}{b}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{32} \sqrt {\pi } \sqrt {b} e^{-\frac {4 a}{b}} \text {erfi}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )-\frac {1}{8} \sqrt {\frac {\pi }{2}} \sqrt {b} e^{-\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )\right )}{b^2}-\frac {2 (c+d x)^4}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{3 b}-\frac {2 \sqrt {(c+d x)^2+1} (c+d x)^3}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}\right )}{d}\)

\(\Big \downarrow \) 2634

\(\displaystyle \frac {e^3 \left (\frac {8 \left (\frac {8 \left (-\frac {1}{32} \sqrt {\pi } \sqrt {b} e^{\frac {4 a}{b}} \text {erf}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{8} \sqrt {\frac {\pi }{2}} \sqrt {b} e^{\frac {2 a}{b}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{32} \sqrt {\pi } \sqrt {b} e^{-\frac {4 a}{b}} \text {erfi}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )-\frac {1}{8} \sqrt {\frac {\pi }{2}} \sqrt {b} e^{-\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )\right )}{b^2}-\frac {2 (c+d x)^4}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{3 b}+\frac {2 \left (-\frac {2 (c+d x)^2}{b \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {2 i \left (\frac {1}{2} i \sqrt {\frac {\pi }{2}} \sqrt {b} e^{\frac {2 a}{b}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )-\frac {1}{2} i \sqrt {\frac {\pi }{2}} \sqrt {b} e^{-\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )\right )}{b^2}\right )}{b}-\frac {2 \sqrt {(c+d x)^2+1} (c+d x)^3}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}\right )}{d}\)

input
Int[(c*e + d*e*x)^3/(a + b*ArcSinh[c + d*x])^(5/2),x]
 
output
(e^3*((-2*(c + d*x)^3*Sqrt[1 + (c + d*x)^2])/(3*b*(a + b*ArcSinh[c + d*x]) 
^(3/2)) + (8*((-2*(c + d*x)^4)/(b*Sqrt[a + b*ArcSinh[c + d*x]]) + (8*(-1/3 
2*(Sqrt[b]*E^((4*a)/b)*Sqrt[Pi]*Erf[(2*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[ 
b]]) + (Sqrt[b]*E^((2*a)/b)*Sqrt[Pi/2]*Erf[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + 
 d*x]])/Sqrt[b]])/8 + (Sqrt[b]*Sqrt[Pi]*Erfi[(2*Sqrt[a + b*ArcSinh[c + d*x 
]])/Sqrt[b]])/(32*E^((4*a)/b)) - (Sqrt[b]*Sqrt[Pi/2]*Erfi[(Sqrt[2]*Sqrt[a 
+ b*ArcSinh[c + d*x]])/Sqrt[b]])/(8*E^((2*a)/b))))/b^2))/(3*b) + (2*((-2*( 
c + d*x)^2)/(b*Sqrt[a + b*ArcSinh[c + d*x]]) + ((2*I)*((I/2)*Sqrt[b]*E^((2 
*a)/b)*Sqrt[Pi/2]*Erf[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]] - (( 
I/2)*Sqrt[b]*Sqrt[Pi/2]*Erfi[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b 
]])/E^((2*a)/b)))/b^2))/b))/d
 

3.3.17.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2611
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] : 
> Simp[2/d   Subst[Int[F^(g*(e - c*(f/d)) + f*g*(x^2/d)), x], x, Sqrt[c + d 
*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]
 

rule 2633
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt 
[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{ 
F, a, b, c, d}, x] && PosQ[b]
 

rule 2634
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt 
[Pi]*(Erf[(c + d*x)*Rt[(-b)*Log[F], 2]]/(2*d*Rt[(-b)*Log[F], 2])), x] /; Fr 
eeQ[{F, a, b, c, d}, x] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3789
Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[I 
/2   Int[(c + d*x)^m/E^(I*(e + f*x)), x], x] - Simp[I/2   Int[(c + d*x)^m*E 
^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]
 

rule 5971
Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + 
(b_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sinh[a + 
b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] & 
& IGtQ[p, 0]
 

rule 6194
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[ 
x^m*Sqrt[1 + c^2*x^2]*((a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1))), x] + (- 
Simp[c*((m + 1)/(b*(n + 1)))   Int[x^(m + 1)*((a + b*ArcSinh[c*x])^(n + 1)/ 
Sqrt[1 + c^2*x^2]), x], x] - Simp[m/(b*c*(n + 1))   Int[x^(m - 1)*((a + b*A 
rcSinh[c*x])^(n + 1)/Sqrt[1 + c^2*x^2]), x], x]) /; FreeQ[{a, b, c}, x] && 
IGtQ[m, 0] && LtQ[n, -2]
 

rule 6195
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[ 
1/(b*c^(m + 1))   Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b], x], x, 
 a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]
 

rule 6233
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) 
 + (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x)^m/(b*c*(n + 1)))*Simp[Sqrt[1 + c 
^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])^(n + 1), x] - Simp[f*(m/(b*c* 
(n + 1)))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]   Int[(f*x)^(m - 1)*(a + 
b*ArcSinh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e 
, c^2*d] && LtQ[n, -1]
 

rule 6274
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^( 
m_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b* 
ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
3.3.17.4 Maple [F]

\[\int \frac {\left (d e x +c e \right )^{3}}{\left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )^{\frac {5}{2}}}d x\]

input
int((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(5/2),x)
 
output
int((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(5/2),x)
 
3.3.17.5 Fricas [F(-2)]

Exception generated. \[ \int \frac {(c e+d e x)^3}{(a+b \text {arcsinh}(c+d x))^{5/2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(5/2),x, algorithm="fricas")
 
output
Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (constant residues)
 
3.3.17.6 Sympy [F]

\[ \int \frac {(c e+d e x)^3}{(a+b \text {arcsinh}(c+d x))^{5/2}} \, dx=e^{3} \left (\int \frac {c^{3}}{a^{2} \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} + 2 a b \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} \operatorname {asinh}{\left (c + d x \right )} + b^{2} \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} \operatorname {asinh}^{2}{\left (c + d x \right )}}\, dx + \int \frac {d^{3} x^{3}}{a^{2} \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} + 2 a b \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} \operatorname {asinh}{\left (c + d x \right )} + b^{2} \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} \operatorname {asinh}^{2}{\left (c + d x \right )}}\, dx + \int \frac {3 c d^{2} x^{2}}{a^{2} \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} + 2 a b \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} \operatorname {asinh}{\left (c + d x \right )} + b^{2} \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} \operatorname {asinh}^{2}{\left (c + d x \right )}}\, dx + \int \frac {3 c^{2} d x}{a^{2} \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} + 2 a b \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} \operatorname {asinh}{\left (c + d x \right )} + b^{2} \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} \operatorname {asinh}^{2}{\left (c + d x \right )}}\, dx\right ) \]

input
integrate((d*e*x+c*e)**3/(a+b*asinh(d*x+c))**(5/2),x)
 
output
e**3*(Integral(c**3/(a**2*sqrt(a + b*asinh(c + d*x)) + 2*a*b*sqrt(a + b*as 
inh(c + d*x))*asinh(c + d*x) + b**2*sqrt(a + b*asinh(c + d*x))*asinh(c + d 
*x)**2), x) + Integral(d**3*x**3/(a**2*sqrt(a + b*asinh(c + d*x)) + 2*a*b* 
sqrt(a + b*asinh(c + d*x))*asinh(c + d*x) + b**2*sqrt(a + b*asinh(c + d*x) 
)*asinh(c + d*x)**2), x) + Integral(3*c*d**2*x**2/(a**2*sqrt(a + b*asinh(c 
 + d*x)) + 2*a*b*sqrt(a + b*asinh(c + d*x))*asinh(c + d*x) + b**2*sqrt(a + 
 b*asinh(c + d*x))*asinh(c + d*x)**2), x) + Integral(3*c**2*d*x/(a**2*sqrt 
(a + b*asinh(c + d*x)) + 2*a*b*sqrt(a + b*asinh(c + d*x))*asinh(c + d*x) + 
 b**2*sqrt(a + b*asinh(c + d*x))*asinh(c + d*x)**2), x))
 
3.3.17.7 Maxima [F]

\[ \int \frac {(c e+d e x)^3}{(a+b \text {arcsinh}(c+d x))^{5/2}} \, dx=\int { \frac {{\left (d e x + c e\right )}^{3}}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(5/2),x, algorithm="maxima")
 
output
integrate((d*e*x + c*e)^3/(b*arcsinh(d*x + c) + a)^(5/2), x)
 
3.3.17.8 Giac [F]

\[ \int \frac {(c e+d e x)^3}{(a+b \text {arcsinh}(c+d x))^{5/2}} \, dx=\int { \frac {{\left (d e x + c e\right )}^{3}}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(5/2),x, algorithm="giac")
 
output
integrate((d*e*x + c*e)^3/(b*arcsinh(d*x + c) + a)^(5/2), x)
 
3.3.17.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(c e+d e x)^3}{(a+b \text {arcsinh}(c+d x))^{5/2}} \, dx=\int \frac {{\left (c\,e+d\,e\,x\right )}^3}{{\left (a+b\,\mathrm {asinh}\left (c+d\,x\right )\right )}^{5/2}} \,d x \]

input
int((c*e + d*e*x)^3/(a + b*asinh(c + d*x))^(5/2),x)
 
output
int((c*e + d*e*x)^3/(a + b*asinh(c + d*x))^(5/2), x)