3.3.26 \(\int \frac {1}{(a+b \text {arcsinh}(c+d x))^{7/2}} \, dx\) [226]

3.3.26.1 Optimal result
3.3.26.2 Mathematica [A] (verified)
3.3.26.3 Rubi [C] (verified)
3.3.26.4 Maple [F]
3.3.26.5 Fricas [F(-2)]
3.3.26.6 Sympy [F]
3.3.26.7 Maxima [F]
3.3.26.8 Giac [F]
3.3.26.9 Mupad [F(-1)]

3.3.26.1 Optimal result

Integrand size = 14, antiderivative size = 195 \[ \int \frac {1}{(a+b \text {arcsinh}(c+d x))^{7/2}} \, dx=-\frac {2 \sqrt {1+(c+d x)^2}}{5 b d (a+b \text {arcsinh}(c+d x))^{5/2}}-\frac {4 (c+d x)}{15 b^2 d (a+b \text {arcsinh}(c+d x))^{3/2}}-\frac {8 \sqrt {1+(c+d x)^2}}{15 b^3 d \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {4 e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d}+\frac {4 e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d} \]

output
-4/15*(d*x+c)/b^2/d/(a+b*arcsinh(d*x+c))^(3/2)-4/15*exp(a/b)*erf((a+b*arcs 
inh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/b^(7/2)/d+4/15*erfi((a+b*arcsinh(d*x+c 
))^(1/2)/b^(1/2))*Pi^(1/2)/b^(7/2)/d/exp(a/b)-2/5*(1+(d*x+c)^2)^(1/2)/b/d/ 
(a+b*arcsinh(d*x+c))^(5/2)-8/15*(1+(d*x+c)^2)^(1/2)/b^3/d/(a+b*arcsinh(d*x 
+c))^(1/2)
 
3.3.26.2 Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 238, normalized size of antiderivative = 1.22 \[ \int \frac {1}{(a+b \text {arcsinh}(c+d x))^{7/2}} \, dx=\frac {-6 b^2 e^{\text {arcsinh}(c+d x)}-2 e^{-\text {arcsinh}(c+d x)} \left (4 a^2+2 a b (-1+4 \text {arcsinh}(c+d x))+b^2 \left (3-2 \text {arcsinh}(c+d x)+4 \text {arcsinh}(c+d x)^2\right )\right )+8 e^{a/b} \sqrt {\frac {a}{b}+\text {arcsinh}(c+d x)} (a+b \text {arcsinh}(c+d x))^2 \Gamma \left (\frac {1}{2},\frac {a}{b}+\text {arcsinh}(c+d x)\right )-4 e^{-\frac {a}{b}} (a+b \text {arcsinh}(c+d x)) \left (e^{\frac {a}{b}+\text {arcsinh}(c+d x)} (2 a+b+2 b \text {arcsinh}(c+d x))+2 b \left (-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )^{3/2} \Gamma \left (\frac {1}{2},-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )\right )}{30 b^3 d (a+b \text {arcsinh}(c+d x))^{5/2}} \]

input
Integrate[(a + b*ArcSinh[c + d*x])^(-7/2),x]
 
output
(-6*b^2*E^ArcSinh[c + d*x] - (2*(4*a^2 + 2*a*b*(-1 + 4*ArcSinh[c + d*x]) + 
 b^2*(3 - 2*ArcSinh[c + d*x] + 4*ArcSinh[c + d*x]^2)))/E^ArcSinh[c + d*x] 
+ 8*E^(a/b)*Sqrt[a/b + ArcSinh[c + d*x]]*(a + b*ArcSinh[c + d*x])^2*Gamma[ 
1/2, a/b + ArcSinh[c + d*x]] - (4*(a + b*ArcSinh[c + d*x])*(E^(a/b + ArcSi 
nh[c + d*x])*(2*a + b + 2*b*ArcSinh[c + d*x]) + 2*b*(-((a + b*ArcSinh[c + 
d*x])/b))^(3/2)*Gamma[1/2, -((a + b*ArcSinh[c + d*x])/b)]))/E^(a/b))/(30*b 
^3*d*(a + b*ArcSinh[c + d*x])^(5/2))
 
3.3.26.3 Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 1.00 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.08, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.857, Rules used = {6273, 6188, 6233, 6188, 6234, 25, 3042, 26, 3789, 2611, 2633, 2634}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a+b \text {arcsinh}(c+d x))^{7/2}} \, dx\)

\(\Big \downarrow \) 6273

\(\displaystyle \frac {\int \frac {1}{(a+b \text {arcsinh}(c+d x))^{7/2}}d(c+d x)}{d}\)

\(\Big \downarrow \) 6188

\(\displaystyle \frac {\frac {2 \int \frac {c+d x}{\sqrt {(c+d x)^2+1} (a+b \text {arcsinh}(c+d x))^{5/2}}d(c+d x)}{5 b}-\frac {2 \sqrt {(c+d x)^2+1}}{5 b (a+b \text {arcsinh}(c+d x))^{5/2}}}{d}\)

\(\Big \downarrow \) 6233

\(\displaystyle \frac {\frac {2 \left (\frac {2 \int \frac {1}{(a+b \text {arcsinh}(c+d x))^{3/2}}d(c+d x)}{3 b}-\frac {2 (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}\right )}{5 b}-\frac {2 \sqrt {(c+d x)^2+1}}{5 b (a+b \text {arcsinh}(c+d x))^{5/2}}}{d}\)

\(\Big \downarrow \) 6188

\(\displaystyle \frac {\frac {2 \left (\frac {2 \left (\frac {2 \int \frac {c+d x}{\sqrt {(c+d x)^2+1} \sqrt {a+b \text {arcsinh}(c+d x)}}d(c+d x)}{b}-\frac {2 \sqrt {(c+d x)^2+1}}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{3 b}-\frac {2 (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}\right )}{5 b}-\frac {2 \sqrt {(c+d x)^2+1}}{5 b (a+b \text {arcsinh}(c+d x))^{5/2}}}{d}\)

\(\Big \downarrow \) 6234

\(\displaystyle \frac {\frac {2 \left (\frac {2 \left (\frac {2 \int -\frac {\sinh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))}{b^2}-\frac {2 \sqrt {(c+d x)^2+1}}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{3 b}-\frac {2 (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}\right )}{5 b}-\frac {2 \sqrt {(c+d x)^2+1}}{5 b (a+b \text {arcsinh}(c+d x))^{5/2}}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {2 \left (\frac {2 \left (-\frac {2 \int \frac {\sinh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))}{b^2}-\frac {2 \sqrt {(c+d x)^2+1}}{b \sqrt {a+b \text {arcsinh}(c+d x)}}\right )}{3 b}-\frac {2 (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}\right )}{5 b}-\frac {2 \sqrt {(c+d x)^2+1}}{5 b (a+b \text {arcsinh}(c+d x))^{5/2}}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {2 \sqrt {(c+d x)^2+1}}{5 b (a+b \text {arcsinh}(c+d x))^{5/2}}+\frac {2 \left (-\frac {2 (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {2 \left (-\frac {2 \sqrt {(c+d x)^2+1}}{b \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {2 \int -\frac {i \sin \left (\frac {i a}{b}-\frac {i (a+b \text {arcsinh}(c+d x))}{b}\right )}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))}{b^2}\right )}{3 b}\right )}{5 b}}{d}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {-\frac {2 \sqrt {(c+d x)^2+1}}{5 b (a+b \text {arcsinh}(c+d x))^{5/2}}+\frac {2 \left (-\frac {2 (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {2 \left (-\frac {2 \sqrt {(c+d x)^2+1}}{b \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {2 i \int \frac {\sin \left (\frac {i a}{b}-\frac {i (a+b \text {arcsinh}(c+d x))}{b}\right )}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))}{b^2}\right )}{3 b}\right )}{5 b}}{d}\)

\(\Big \downarrow \) 3789

\(\displaystyle \frac {-\frac {2 \sqrt {(c+d x)^2+1}}{5 b (a+b \text {arcsinh}(c+d x))^{5/2}}+\frac {2 \left (-\frac {2 (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {2 \left (-\frac {2 \sqrt {(c+d x)^2+1}}{b \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {2 i \left (\frac {1}{2} i \int \frac {e^{\frac {a-c-d x}{b}}}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))-\frac {1}{2} i \int \frac {e^{-\frac {a-c-d x}{b}}}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))\right )}{b^2}\right )}{3 b}\right )}{5 b}}{d}\)

\(\Big \downarrow \) 2611

\(\displaystyle \frac {-\frac {2 \sqrt {(c+d x)^2+1}}{5 b (a+b \text {arcsinh}(c+d x))^{5/2}}+\frac {2 \left (-\frac {2 (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {2 \left (-\frac {2 \sqrt {(c+d x)^2+1}}{b \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {2 i \left (i \int e^{\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}}d\sqrt {a+b \text {arcsinh}(c+d x)}-i \int e^{\frac {a+b \text {arcsinh}(c+d x)}{b}-\frac {a}{b}}d\sqrt {a+b \text {arcsinh}(c+d x)}\right )}{b^2}\right )}{3 b}\right )}{5 b}}{d}\)

\(\Big \downarrow \) 2633

\(\displaystyle \frac {-\frac {2 \sqrt {(c+d x)^2+1}}{5 b (a+b \text {arcsinh}(c+d x))^{5/2}}+\frac {2 \left (-\frac {2 (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {2 \left (-\frac {2 \sqrt {(c+d x)^2+1}}{b \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {2 i \left (i \int e^{\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}}d\sqrt {a+b \text {arcsinh}(c+d x)}-\frac {1}{2} i \sqrt {\pi } \sqrt {b} e^{-\frac {a}{b}} \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )\right )}{b^2}\right )}{3 b}\right )}{5 b}}{d}\)

\(\Big \downarrow \) 2634

\(\displaystyle \frac {-\frac {2 \sqrt {(c+d x)^2+1}}{5 b (a+b \text {arcsinh}(c+d x))^{5/2}}+\frac {2 \left (-\frac {2 (c+d x)}{3 b (a+b \text {arcsinh}(c+d x))^{3/2}}+\frac {2 \left (-\frac {2 \sqrt {(c+d x)^2+1}}{b \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {2 i \left (\frac {1}{2} i \sqrt {\pi } \sqrt {b} e^{a/b} \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )-\frac {1}{2} i \sqrt {\pi } \sqrt {b} e^{-\frac {a}{b}} \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )\right )}{b^2}\right )}{3 b}\right )}{5 b}}{d}\)

input
Int[(a + b*ArcSinh[c + d*x])^(-7/2),x]
 
output
((-2*Sqrt[1 + (c + d*x)^2])/(5*b*(a + b*ArcSinh[c + d*x])^(5/2)) + (2*((-2 
*(c + d*x))/(3*b*(a + b*ArcSinh[c + d*x])^(3/2)) + (2*((-2*Sqrt[1 + (c + d 
*x)^2])/(b*Sqrt[a + b*ArcSinh[c + d*x]]) + ((2*I)*((I/2)*Sqrt[b]*E^(a/b)*S 
qrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]] - ((I/2)*Sqrt[b]*Sqrt[Pi 
]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/E^(a/b)))/b^2))/(3*b)))/(5*b 
))/d
 

3.3.26.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 2611
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] : 
> Simp[2/d   Subst[Int[F^(g*(e - c*(f/d)) + f*g*(x^2/d)), x], x, Sqrt[c + d 
*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]
 

rule 2633
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt 
[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{ 
F, a, b, c, d}, x] && PosQ[b]
 

rule 2634
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt 
[Pi]*(Erf[(c + d*x)*Rt[(-b)*Log[F], 2]]/(2*d*Rt[(-b)*Log[F], 2])), x] /; Fr 
eeQ[{F, a, b, c, d}, x] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3789
Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[I 
/2   Int[(c + d*x)^m/E^(I*(e + f*x)), x], x] - Simp[I/2   Int[(c + d*x)^m*E 
^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]
 

rule 6188
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Sqrt[1 + c^ 
2*x^2]*((a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1))), x] - Simp[c/(b*(n + 1) 
)   Int[x*((a + b*ArcSinh[c*x])^(n + 1)/Sqrt[1 + c^2*x^2]), x], x] /; FreeQ 
[{a, b, c}, x] && LtQ[n, -1]
 

rule 6233
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) 
 + (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x)^m/(b*c*(n + 1)))*Simp[Sqrt[1 + c 
^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])^(n + 1), x] - Simp[f*(m/(b*c* 
(n + 1)))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]   Int[(f*x)^(m - 1)*(a + 
b*ArcSinh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e 
, c^2*d] && LtQ[n, -1]
 

rule 6234
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_) 
^2)^(p_.), x_Symbol] :> Simp[(1/(b*c^(m + 1)))*Simp[(d + e*x^2)^p/(1 + c^2* 
x^2)^p]   Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b]^(2*p + 1), x], 
x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] 
 && IGtQ[2*p + 2, 0] && IGtQ[m, 0]
 

rule 6273
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[1/d 
   Subst[Int[(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d 
, n}, x]
 
3.3.26.4 Maple [F]

\[\int \frac {1}{\left (a +b \,\operatorname {arcsinh}\left (d x +c \right )\right )^{\frac {7}{2}}}d x\]

input
int(1/(a+b*arcsinh(d*x+c))^(7/2),x)
 
output
int(1/(a+b*arcsinh(d*x+c))^(7/2),x)
 
3.3.26.5 Fricas [F(-2)]

Exception generated. \[ \int \frac {1}{(a+b \text {arcsinh}(c+d x))^{7/2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate(1/(a+b*arcsinh(d*x+c))^(7/2),x, algorithm="fricas")
 
output
Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (constant residues)
 
3.3.26.6 Sympy [F]

\[ \int \frac {1}{(a+b \text {arcsinh}(c+d x))^{7/2}} \, dx=\int \frac {1}{\left (a + b \operatorname {asinh}{\left (c + d x \right )}\right )^{\frac {7}{2}}}\, dx \]

input
integrate(1/(a+b*asinh(d*x+c))**(7/2),x)
 
output
Integral((a + b*asinh(c + d*x))**(-7/2), x)
 
3.3.26.7 Maxima [F]

\[ \int \frac {1}{(a+b \text {arcsinh}(c+d x))^{7/2}} \, dx=\int { \frac {1}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{\frac {7}{2}}} \,d x } \]

input
integrate(1/(a+b*arcsinh(d*x+c))^(7/2),x, algorithm="maxima")
 
output
integrate((b*arcsinh(d*x + c) + a)^(-7/2), x)
 
3.3.26.8 Giac [F]

\[ \int \frac {1}{(a+b \text {arcsinh}(c+d x))^{7/2}} \, dx=\int { \frac {1}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{\frac {7}{2}}} \,d x } \]

input
integrate(1/(a+b*arcsinh(d*x+c))^(7/2),x, algorithm="giac")
 
output
integrate((b*arcsinh(d*x + c) + a)^(-7/2), x)
 
3.3.26.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \text {arcsinh}(c+d x))^{7/2}} \, dx=\int \frac {1}{{\left (a+b\,\mathrm {asinh}\left (c+d\,x\right )\right )}^{7/2}} \,d x \]

input
int(1/(a + b*asinh(c + d*x))^(7/2),x)
 
output
int(1/(a + b*asinh(c + d*x))^(7/2), x)