3.3.28 \(\int (c e+d e x)^{7/2} (a+b \text {arcsinh}(c+d x)) \, dx\) [228]

3.3.28.1 Optimal result
3.3.28.2 Mathematica [C] (verified)
3.3.28.3 Rubi [A] (verified)
3.3.28.4 Maple [C] (verified)
3.3.28.5 Fricas [C] (verification not implemented)
3.3.28.6 Sympy [F(-1)]
3.3.28.7 Maxima [F(-2)]
3.3.28.8 Giac [F]
3.3.28.9 Mupad [F(-1)]

3.3.28.1 Optimal result

Integrand size = 23, antiderivative size = 298 \[ \int (c e+d e x)^{7/2} (a+b \text {arcsinh}(c+d x)) \, dx=\frac {28 b e^2 (e (c+d x))^{3/2} \sqrt {1+(c+d x)^2}}{405 d}-\frac {4 b (e (c+d x))^{7/2} \sqrt {1+(c+d x)^2}}{81 d}-\frac {28 b e^3 \sqrt {e (c+d x)} \sqrt {1+(c+d x)^2}}{135 d (1+c+d x)}+\frac {2 (e (c+d x))^{9/2} (a+b \text {arcsinh}(c+d x))}{9 d e}+\frac {28 b e^{7/2} (1+c+d x) \sqrt {\frac {1+(c+d x)^2}{(1+c+d x)^2}} E\left (2 \arctan \left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right )|\frac {1}{2}\right )}{135 d \sqrt {1+(c+d x)^2}}-\frac {14 b e^{7/2} (1+c+d x) \sqrt {\frac {1+(c+d x)^2}{(1+c+d x)^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right ),\frac {1}{2}\right )}{135 d \sqrt {1+(c+d x)^2}} \]

output
2/9*(e*(d*x+c))^(9/2)*(a+b*arcsinh(d*x+c))/d/e+28/405*b*e^2*(e*(d*x+c))^(3 
/2)*(1+(d*x+c)^2)^(1/2)/d-4/81*b*(e*(d*x+c))^(7/2)*(1+(d*x+c)^2)^(1/2)/d-2 
8/135*b*e^3*(e*(d*x+c))^(1/2)*(1+(d*x+c)^2)^(1/2)/d/(d*x+c+1)+28/135*b*e^( 
7/2)*(d*x+c+1)*(cos(2*arctan((e*(d*x+c))^(1/2)/e^(1/2)))^2)^(1/2)/cos(2*ar 
ctan((e*(d*x+c))^(1/2)/e^(1/2)))*EllipticE(sin(2*arctan((e*(d*x+c))^(1/2)/ 
e^(1/2))),1/2*2^(1/2))*((1+(d*x+c)^2)/(d*x+c+1)^2)^(1/2)/d/(1+(d*x+c)^2)^( 
1/2)-14/135*b*e^(7/2)*(d*x+c+1)*(cos(2*arctan((e*(d*x+c))^(1/2)/e^(1/2)))^ 
2)^(1/2)/cos(2*arctan((e*(d*x+c))^(1/2)/e^(1/2)))*EllipticF(sin(2*arctan(( 
e*(d*x+c))^(1/2)/e^(1/2))),1/2*2^(1/2))*((1+(d*x+c)^2)/(d*x+c+1)^2)^(1/2)/ 
d/(1+(d*x+c)^2)^(1/2)
 
3.3.28.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.16 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.38 \[ \int (c e+d e x)^{7/2} (a+b \text {arcsinh}(c+d x)) \, dx=\frac {2 (e (c+d x))^{7/2} \left (45 a (c+d x)^3+14 b \sqrt {1+(c+d x)^2}-10 b (c+d x)^2 \sqrt {1+(c+d x)^2}+45 b (c+d x)^3 \text {arcsinh}(c+d x)-14 b \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-(c+d x)^2\right )\right )}{405 d (c+d x)^2} \]

input
Integrate[(c*e + d*e*x)^(7/2)*(a + b*ArcSinh[c + d*x]),x]
 
output
(2*(e*(c + d*x))^(7/2)*(45*a*(c + d*x)^3 + 14*b*Sqrt[1 + (c + d*x)^2] - 10 
*b*(c + d*x)^2*Sqrt[1 + (c + d*x)^2] + 45*b*(c + d*x)^3*ArcSinh[c + d*x] - 
 14*b*Hypergeometric2F1[1/2, 3/4, 7/4, -(c + d*x)^2]))/(405*d*(c + d*x)^2)
 
3.3.28.3 Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 323, normalized size of antiderivative = 1.08, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {6274, 6191, 262, 262, 266, 834, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (c e+d e x)^{7/2} (a+b \text {arcsinh}(c+d x)) \, dx\)

\(\Big \downarrow \) 6274

\(\displaystyle \frac {\int (e (c+d x))^{7/2} (a+b \text {arcsinh}(c+d x))d(c+d x)}{d}\)

\(\Big \downarrow \) 6191

\(\displaystyle \frac {\frac {2 (e (c+d x))^{9/2} (a+b \text {arcsinh}(c+d x))}{9 e}-\frac {2 b \int \frac {(e (c+d x))^{9/2}}{\sqrt {(c+d x)^2+1}}d(c+d x)}{9 e}}{d}\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {\frac {2 (e (c+d x))^{9/2} (a+b \text {arcsinh}(c+d x))}{9 e}-\frac {2 b \left (\frac {2}{9} e \sqrt {(c+d x)^2+1} (e (c+d x))^{7/2}-\frac {7}{9} e^2 \int \frac {(e (c+d x))^{5/2}}{\sqrt {(c+d x)^2+1}}d(c+d x)\right )}{9 e}}{d}\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {\frac {2 (e (c+d x))^{9/2} (a+b \text {arcsinh}(c+d x))}{9 e}-\frac {2 b \left (\frac {2}{9} e \sqrt {(c+d x)^2+1} (e (c+d x))^{7/2}-\frac {7}{9} e^2 \left (\frac {2}{5} e \sqrt {(c+d x)^2+1} (e (c+d x))^{3/2}-\frac {3}{5} e^2 \int \frac {\sqrt {e (c+d x)}}{\sqrt {(c+d x)^2+1}}d(c+d x)\right )\right )}{9 e}}{d}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {\frac {2 (e (c+d x))^{9/2} (a+b \text {arcsinh}(c+d x))}{9 e}-\frac {2 b \left (\frac {2}{9} e \sqrt {(c+d x)^2+1} (e (c+d x))^{7/2}-\frac {7}{9} e^2 \left (\frac {2}{5} e \sqrt {(c+d x)^2+1} (e (c+d x))^{3/2}-\frac {6}{5} e \int \frac {e (c+d x)}{\sqrt {(c+d x)^2+1}}d\sqrt {e (c+d x)}\right )\right )}{9 e}}{d}\)

\(\Big \downarrow \) 834

\(\displaystyle \frac {\frac {2 (e (c+d x))^{9/2} (a+b \text {arcsinh}(c+d x))}{9 e}-\frac {2 b \left (\frac {2}{9} e \sqrt {(c+d x)^2+1} (e (c+d x))^{7/2}-\frac {7}{9} e^2 \left (\frac {2}{5} e \sqrt {(c+d x)^2+1} (e (c+d x))^{3/2}-\frac {6}{5} e \left (e \int \frac {1}{\sqrt {(c+d x)^2+1}}d\sqrt {e (c+d x)}-e \int \frac {e-e (c+d x)}{e \sqrt {(c+d x)^2+1}}d\sqrt {e (c+d x)}\right )\right )\right )}{9 e}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {2 (e (c+d x))^{9/2} (a+b \text {arcsinh}(c+d x))}{9 e}-\frac {2 b \left (\frac {2}{9} e \sqrt {(c+d x)^2+1} (e (c+d x))^{7/2}-\frac {7}{9} e^2 \left (\frac {2}{5} e \sqrt {(c+d x)^2+1} (e (c+d x))^{3/2}-\frac {6}{5} e \left (e \int \frac {1}{\sqrt {(c+d x)^2+1}}d\sqrt {e (c+d x)}-\int \frac {e-e (c+d x)}{\sqrt {(c+d x)^2+1}}d\sqrt {e (c+d x)}\right )\right )\right )}{9 e}}{d}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {\frac {2 (e (c+d x))^{9/2} (a+b \text {arcsinh}(c+d x))}{9 e}-\frac {2 b \left (\frac {2}{9} e \sqrt {(c+d x)^2+1} (e (c+d x))^{7/2}-\frac {7}{9} e^2 \left (\frac {2}{5} e \sqrt {(c+d x)^2+1} (e (c+d x))^{3/2}-\frac {6}{5} e \left (\frac {\sqrt {e} (e (c+d x)+e) \sqrt {\frac {e^2 (c+d x)^2+e^2}{(e (c+d x)+e)^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right ),\frac {1}{2}\right )}{2 \sqrt {(c+d x)^2+1}}-\int \frac {e-e (c+d x)}{\sqrt {(c+d x)^2+1}}d\sqrt {e (c+d x)}\right )\right )\right )}{9 e}}{d}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {\frac {2 (e (c+d x))^{9/2} (a+b \text {arcsinh}(c+d x))}{9 e}-\frac {2 b \left (\frac {2}{9} e \sqrt {(c+d x)^2+1} (e (c+d x))^{7/2}-\frac {7}{9} e^2 \left (\frac {2}{5} e \sqrt {(c+d x)^2+1} (e (c+d x))^{3/2}-\frac {6}{5} e \left (\frac {\sqrt {e} (e (c+d x)+e) \sqrt {\frac {e^2 (c+d x)^2+e^2}{(e (c+d x)+e)^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right ),\frac {1}{2}\right )}{2 \sqrt {(c+d x)^2+1}}-\frac {\sqrt {e} (e (c+d x)+e) \sqrt {\frac {e^2 (c+d x)^2+e^2}{(e (c+d x)+e)^2}} E\left (2 \arctan \left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right )|\frac {1}{2}\right )}{\sqrt {(c+d x)^2+1}}+\frac {e^2 \sqrt {(c+d x)^2+1} \sqrt {e (c+d x)}}{e (c+d x)+e}\right )\right )\right )}{9 e}}{d}\)

input
Int[(c*e + d*e*x)^(7/2)*(a + b*ArcSinh[c + d*x]),x]
 
output
((2*(e*(c + d*x))^(9/2)*(a + b*ArcSinh[c + d*x]))/(9*e) - (2*b*((2*e*(e*(c 
 + d*x))^(7/2)*Sqrt[1 + (c + d*x)^2])/9 - (7*e^2*((2*e*(e*(c + d*x))^(3/2) 
*Sqrt[1 + (c + d*x)^2])/5 - (6*e*((e^2*Sqrt[e*(c + d*x)]*Sqrt[1 + (c + d*x 
)^2])/(e + e*(c + d*x)) - (Sqrt[e]*(e + e*(c + d*x))*Sqrt[(e^2 + e^2*(c + 
d*x)^2)/(e + e*(c + d*x))^2]*EllipticE[2*ArcTan[Sqrt[e*(c + d*x)]/Sqrt[e]] 
, 1/2])/Sqrt[1 + (c + d*x)^2] + (Sqrt[e]*(e + e*(c + d*x))*Sqrt[(e^2 + e^2 
*(c + d*x)^2)/(e + e*(c + d*x))^2]*EllipticF[2*ArcTan[Sqrt[e*(c + d*x)]/Sq 
rt[e]], 1/2])/(2*Sqrt[1 + (c + d*x)^2])))/5))/9))/(9*e))/d
 

3.3.28.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 

rule 6191
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] 
 :> Simp[(d*x)^(m + 1)*((a + b*ArcSinh[c*x])^n/(d*(m + 1))), x] - Simp[b*c* 
(n/(d*(m + 1)))   Int[(d*x)^(m + 1)*((a + b*ArcSinh[c*x])^(n - 1)/Sqrt[1 + 
c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
 

rule 6274
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^( 
m_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b* 
ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
3.3.28.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.98 (sec) , antiderivative size = 238, normalized size of antiderivative = 0.80

method result size
derivativedivides \(\frac {\frac {2 a \left (d e x +c e \right )^{\frac {9}{2}}}{9}+2 b \left (\frac {\left (d e x +c e \right )^{\frac {9}{2}} \operatorname {arcsinh}\left (\frac {d e x +c e}{e}\right )}{9}-\frac {2 \left (\frac {e^{2} \left (d e x +c e \right )^{\frac {7}{2}} \sqrt {\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}{9}-\frac {7 e^{4} \left (d e x +c e \right )^{\frac {3}{2}} \sqrt {\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}{45}+\frac {7 i e^{5} \sqrt {1-\frac {i \left (d e x +c e \right )}{e}}\, \sqrt {1+\frac {i \left (d e x +c e \right )}{e}}\, \left (\operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {\frac {i}{e}}, i\right )-\operatorname {EllipticE}\left (\sqrt {d e x +c e}\, \sqrt {\frac {i}{e}}, i\right )\right )}{15 \sqrt {\frac {i}{e}}\, \sqrt {\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}\right )}{9 e}\right )}{d e}\) \(238\)
default \(\frac {\frac {2 a \left (d e x +c e \right )^{\frac {9}{2}}}{9}+2 b \left (\frac {\left (d e x +c e \right )^{\frac {9}{2}} \operatorname {arcsinh}\left (\frac {d e x +c e}{e}\right )}{9}-\frac {2 \left (\frac {e^{2} \left (d e x +c e \right )^{\frac {7}{2}} \sqrt {\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}{9}-\frac {7 e^{4} \left (d e x +c e \right )^{\frac {3}{2}} \sqrt {\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}{45}+\frac {7 i e^{5} \sqrt {1-\frac {i \left (d e x +c e \right )}{e}}\, \sqrt {1+\frac {i \left (d e x +c e \right )}{e}}\, \left (\operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {\frac {i}{e}}, i\right )-\operatorname {EllipticE}\left (\sqrt {d e x +c e}\, \sqrt {\frac {i}{e}}, i\right )\right )}{15 \sqrt {\frac {i}{e}}\, \sqrt {\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}\right )}{9 e}\right )}{d e}\) \(238\)
parts \(\frac {2 a \left (d e x +c e \right )^{\frac {9}{2}}}{9 d e}+\frac {2 b \left (\frac {\left (d e x +c e \right )^{\frac {9}{2}} \operatorname {arcsinh}\left (\frac {d e x +c e}{e}\right )}{9}-\frac {2 \left (\frac {e^{2} \left (d e x +c e \right )^{\frac {7}{2}} \sqrt {\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}{9}-\frac {7 e^{4} \left (d e x +c e \right )^{\frac {3}{2}} \sqrt {\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}{45}+\frac {7 i e^{5} \sqrt {1-\frac {i \left (d e x +c e \right )}{e}}\, \sqrt {1+\frac {i \left (d e x +c e \right )}{e}}\, \left (\operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {\frac {i}{e}}, i\right )-\operatorname {EllipticE}\left (\sqrt {d e x +c e}\, \sqrt {\frac {i}{e}}, i\right )\right )}{15 \sqrt {\frac {i}{e}}\, \sqrt {\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}\right )}{9 e}\right )}{d e}\) \(243\)

input
int((d*e*x+c*e)^(7/2)*(a+b*arcsinh(d*x+c)),x,method=_RETURNVERBOSE)
 
output
2/d/e*(1/9*a*(d*e*x+c*e)^(9/2)+b*(1/9*(d*e*x+c*e)^(9/2)*arcsinh(1/e*(d*e*x 
+c*e))-2/9/e*(1/9*e^2*(d*e*x+c*e)^(7/2)*(1/e^2*(d*e*x+c*e)^2+1)^(1/2)-7/45 
*e^4*(d*e*x+c*e)^(3/2)*(1/e^2*(d*e*x+c*e)^2+1)^(1/2)+7/15*I*e^5/(I/e)^(1/2 
)*(1-I/e*(d*e*x+c*e))^(1/2)*(1+I/e*(d*e*x+c*e))^(1/2)/(1/e^2*(d*e*x+c*e)^2 
+1)^(1/2)*(EllipticF((d*e*x+c*e)^(1/2)*(I/e)^(1/2),I)-EllipticE((d*e*x+c*e 
)^(1/2)*(I/e)^(1/2),I)))))
 
3.3.28.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 306, normalized size of antiderivative = 1.03 \[ \int (c e+d e x)^{7/2} (a+b \text {arcsinh}(c+d x)) \, dx=\frac {2 \, {\left (42 \, \sqrt {d^{3} e} b e^{3} {\rm weierstrassZeta}\left (-\frac {4}{d^{2}}, 0, {\rm weierstrassPInverse}\left (-\frac {4}{d^{2}}, 0, \frac {d x + c}{d}\right )\right ) + 45 \, {\left (b d^{5} e^{3} x^{4} + 4 \, b c d^{4} e^{3} x^{3} + 6 \, b c^{2} d^{3} e^{3} x^{2} + 4 \, b c^{3} d^{2} e^{3} x + b c^{4} d e^{3}\right )} \sqrt {d e x + c e} \log \left (d x + c + \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} + 1}\right ) - 2 \, {\left (5 \, b d^{4} e^{3} x^{3} + 15 \, b c d^{3} e^{3} x^{2} + {\left (15 \, b c^{2} - 7 \, b\right )} d^{2} e^{3} x + {\left (5 \, b c^{3} - 7 \, b c\right )} d e^{3}\right )} \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} + 1} \sqrt {d e x + c e} + 45 \, {\left (a d^{5} e^{3} x^{4} + 4 \, a c d^{4} e^{3} x^{3} + 6 \, a c^{2} d^{3} e^{3} x^{2} + 4 \, a c^{3} d^{2} e^{3} x + a c^{4} d e^{3}\right )} \sqrt {d e x + c e}\right )}}{405 \, d^{2}} \]

input
integrate((d*e*x+c*e)^(7/2)*(a+b*arcsinh(d*x+c)),x, algorithm="fricas")
 
output
2/405*(42*sqrt(d^3*e)*b*e^3*weierstrassZeta(-4/d^2, 0, weierstrassPInverse 
(-4/d^2, 0, (d*x + c)/d)) + 45*(b*d^5*e^3*x^4 + 4*b*c*d^4*e^3*x^3 + 6*b*c^ 
2*d^3*e^3*x^2 + 4*b*c^3*d^2*e^3*x + b*c^4*d*e^3)*sqrt(d*e*x + c*e)*log(d*x 
 + c + sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1)) - 2*(5*b*d^4*e^3*x^3 + 15*b*c*d^ 
3*e^3*x^2 + (15*b*c^2 - 7*b)*d^2*e^3*x + (5*b*c^3 - 7*b*c)*d*e^3)*sqrt(d^2 
*x^2 + 2*c*d*x + c^2 + 1)*sqrt(d*e*x + c*e) + 45*(a*d^5*e^3*x^4 + 4*a*c*d^ 
4*e^3*x^3 + 6*a*c^2*d^3*e^3*x^2 + 4*a*c^3*d^2*e^3*x + a*c^4*d*e^3)*sqrt(d* 
e*x + c*e))/d^2
 
3.3.28.6 Sympy [F(-1)]

Timed out. \[ \int (c e+d e x)^{7/2} (a+b \text {arcsinh}(c+d x)) \, dx=\text {Timed out} \]

input
integrate((d*e*x+c*e)**(7/2)*(a+b*asinh(d*x+c)),x)
 
output
Timed out
 
3.3.28.7 Maxima [F(-2)]

Exception generated. \[ \int (c e+d e x)^{7/2} (a+b \text {arcsinh}(c+d x)) \, dx=\text {Exception raised: ValueError} \]

input
integrate((d*e*x+c*e)^(7/2)*(a+b*arcsinh(d*x+c)),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.3.28.8 Giac [F]

\[ \int (c e+d e x)^{7/2} (a+b \text {arcsinh}(c+d x)) \, dx=\int { {\left (d e x + c e\right )}^{\frac {7}{2}} {\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )} \,d x } \]

input
integrate((d*e*x+c*e)^(7/2)*(a+b*arcsinh(d*x+c)),x, algorithm="giac")
 
output
integrate((d*e*x + c*e)^(7/2)*(b*arcsinh(d*x + c) + a), x)
 
3.3.28.9 Mupad [F(-1)]

Timed out. \[ \int (c e+d e x)^{7/2} (a+b \text {arcsinh}(c+d x)) \, dx=\int {\left (c\,e+d\,e\,x\right )}^{7/2}\,\left (a+b\,\mathrm {asinh}\left (c+d\,x\right )\right ) \,d x \]

input
int((c*e + d*e*x)^(7/2)*(a + b*asinh(c + d*x)),x)
 
output
int((c*e + d*e*x)^(7/2)*(a + b*asinh(c + d*x)), x)