3.3.32 \(\int \frac {a+b \text {arcsinh}(c+d x)}{\sqrt {c e+d e x}} \, dx\) [232]

3.3.32.1 Optimal result
3.3.32.2 Mathematica [C] (verified)
3.3.32.3 Rubi [A] (verified)
3.3.32.4 Maple [C] (verified)
3.3.32.5 Fricas [C] (verification not implemented)
3.3.32.6 Sympy [F]
3.3.32.7 Maxima [F(-2)]
3.3.32.8 Giac [F]
3.3.32.9 Mupad [F(-1)]

3.3.32.1 Optimal result

Integrand size = 23, antiderivative size = 223 \[ \int \frac {a+b \text {arcsinh}(c+d x)}{\sqrt {c e+d e x}} \, dx=-\frac {4 b \sqrt {e (c+d x)} \sqrt {1+(c+d x)^2}}{d e (1+c+d x)}+\frac {2 \sqrt {e (c+d x)} (a+b \text {arcsinh}(c+d x))}{d e}+\frac {4 b (1+c+d x) \sqrt {\frac {1+(c+d x)^2}{(1+c+d x)^2}} E\left (2 \arctan \left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right )|\frac {1}{2}\right )}{d \sqrt {e} \sqrt {1+(c+d x)^2}}-\frac {2 b (1+c+d x) \sqrt {\frac {1+(c+d x)^2}{(1+c+d x)^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right ),\frac {1}{2}\right )}{d \sqrt {e} \sqrt {1+(c+d x)^2}} \]

output
2*(a+b*arcsinh(d*x+c))*(e*(d*x+c))^(1/2)/d/e-4*b*(e*(d*x+c))^(1/2)*(1+(d*x 
+c)^2)^(1/2)/d/e/(d*x+c+1)+4*b*(d*x+c+1)*(cos(2*arctan((e*(d*x+c))^(1/2)/e 
^(1/2)))^2)^(1/2)/cos(2*arctan((e*(d*x+c))^(1/2)/e^(1/2)))*EllipticE(sin(2 
*arctan((e*(d*x+c))^(1/2)/e^(1/2))),1/2*2^(1/2))*((1+(d*x+c)^2)/(d*x+c+1)^ 
2)^(1/2)/d/e^(1/2)/(1+(d*x+c)^2)^(1/2)-2*b*(d*x+c+1)*(cos(2*arctan((e*(d*x 
+c))^(1/2)/e^(1/2)))^2)^(1/2)/cos(2*arctan((e*(d*x+c))^(1/2)/e^(1/2)))*Ell 
ipticF(sin(2*arctan((e*(d*x+c))^(1/2)/e^(1/2))),1/2*2^(1/2))*((1+(d*x+c)^2 
)/(d*x+c+1)^2)^(1/2)/d/e^(1/2)/(1+(d*x+c)^2)^(1/2)
 
3.3.32.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.03 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.27 \[ \int \frac {a+b \text {arcsinh}(c+d x)}{\sqrt {c e+d e x}} \, dx=-\frac {2 \sqrt {e (c+d x)} \left (-3 (a+b \text {arcsinh}(c+d x))+2 b (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-(c+d x)^2\right )\right )}{3 d e} \]

input
Integrate[(a + b*ArcSinh[c + d*x])/Sqrt[c*e + d*e*x],x]
 
output
(-2*Sqrt[e*(c + d*x)]*(-3*(a + b*ArcSinh[c + d*x]) + 2*b*(c + d*x)*Hyperge 
ometric2F1[1/2, 3/4, 7/4, -(c + d*x)^2]))/(3*d*e)
 
3.3.32.3 Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 247, normalized size of antiderivative = 1.11, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {6274, 6191, 266, 834, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \text {arcsinh}(c+d x)}{\sqrt {c e+d e x}} \, dx\)

\(\Big \downarrow \) 6274

\(\displaystyle \frac {\int \frac {a+b \text {arcsinh}(c+d x)}{\sqrt {e (c+d x)}}d(c+d x)}{d}\)

\(\Big \downarrow \) 6191

\(\displaystyle \frac {\frac {2 \sqrt {e (c+d x)} (a+b \text {arcsinh}(c+d x))}{e}-\frac {2 b \int \frac {\sqrt {e (c+d x)}}{\sqrt {(c+d x)^2+1}}d(c+d x)}{e}}{d}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {\frac {2 \sqrt {e (c+d x)} (a+b \text {arcsinh}(c+d x))}{e}-\frac {4 b \int \frac {e (c+d x)}{\sqrt {(c+d x)^2+1}}d\sqrt {e (c+d x)}}{e^2}}{d}\)

\(\Big \downarrow \) 834

\(\displaystyle \frac {\frac {2 \sqrt {e (c+d x)} (a+b \text {arcsinh}(c+d x))}{e}-\frac {4 b \left (e \int \frac {1}{\sqrt {(c+d x)^2+1}}d\sqrt {e (c+d x)}-e \int \frac {e-e (c+d x)}{e \sqrt {(c+d x)^2+1}}d\sqrt {e (c+d x)}\right )}{e^2}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {2 \sqrt {e (c+d x)} (a+b \text {arcsinh}(c+d x))}{e}-\frac {4 b \left (e \int \frac {1}{\sqrt {(c+d x)^2+1}}d\sqrt {e (c+d x)}-\int \frac {e-e (c+d x)}{\sqrt {(c+d x)^2+1}}d\sqrt {e (c+d x)}\right )}{e^2}}{d}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {\frac {2 \sqrt {e (c+d x)} (a+b \text {arcsinh}(c+d x))}{e}-\frac {4 b \left (\frac {\sqrt {e} (e (c+d x)+e) \sqrt {\frac {e^2 (c+d x)^2+e^2}{(e (c+d x)+e)^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right ),\frac {1}{2}\right )}{2 \sqrt {(c+d x)^2+1}}-\int \frac {e-e (c+d x)}{\sqrt {(c+d x)^2+1}}d\sqrt {e (c+d x)}\right )}{e^2}}{d}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {\frac {2 \sqrt {e (c+d x)} (a+b \text {arcsinh}(c+d x))}{e}-\frac {4 b \left (\frac {\sqrt {e} (e (c+d x)+e) \sqrt {\frac {e^2 (c+d x)^2+e^2}{(e (c+d x)+e)^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right ),\frac {1}{2}\right )}{2 \sqrt {(c+d x)^2+1}}-\frac {\sqrt {e} (e (c+d x)+e) \sqrt {\frac {e^2 (c+d x)^2+e^2}{(e (c+d x)+e)^2}} E\left (2 \arctan \left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right )|\frac {1}{2}\right )}{\sqrt {(c+d x)^2+1}}+\frac {e^2 \sqrt {(c+d x)^2+1} \sqrt {e (c+d x)}}{e (c+d x)+e}\right )}{e^2}}{d}\)

input
Int[(a + b*ArcSinh[c + d*x])/Sqrt[c*e + d*e*x],x]
 
output
((2*Sqrt[e*(c + d*x)]*(a + b*ArcSinh[c + d*x]))/e - (4*b*((e^2*Sqrt[e*(c + 
 d*x)]*Sqrt[1 + (c + d*x)^2])/(e + e*(c + d*x)) - (Sqrt[e]*(e + e*(c + d*x 
))*Sqrt[(e^2 + e^2*(c + d*x)^2)/(e + e*(c + d*x))^2]*EllipticE[2*ArcTan[Sq 
rt[e*(c + d*x)]/Sqrt[e]], 1/2])/Sqrt[1 + (c + d*x)^2] + (Sqrt[e]*(e + e*(c 
 + d*x))*Sqrt[(e^2 + e^2*(c + d*x)^2)/(e + e*(c + d*x))^2]*EllipticF[2*Arc 
Tan[Sqrt[e*(c + d*x)]/Sqrt[e]], 1/2])/(2*Sqrt[1 + (c + d*x)^2])))/e^2)/d
 

3.3.32.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 

rule 6191
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] 
 :> Simp[(d*x)^(m + 1)*((a + b*ArcSinh[c*x])^n/(d*(m + 1))), x] - Simp[b*c* 
(n/(d*(m + 1)))   Int[(d*x)^(m + 1)*((a + b*ArcSinh[c*x])^(n - 1)/Sqrt[1 + 
c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
 

rule 6274
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^( 
m_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b* 
ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
3.3.32.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.56 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.72

method result size
derivativedivides \(\frac {2 a \sqrt {d e x +c e}+2 b \left (\sqrt {d e x +c e}\, \operatorname {arcsinh}\left (\frac {d e x +c e}{e}\right )-\frac {2 i \sqrt {1-\frac {i \left (d e x +c e \right )}{e}}\, \sqrt {1+\frac {i \left (d e x +c e \right )}{e}}\, \left (\operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {\frac {i}{e}}, i\right )-\operatorname {EllipticE}\left (\sqrt {d e x +c e}\, \sqrt {\frac {i}{e}}, i\right )\right )}{\sqrt {\frac {i}{e}}\, \sqrt {\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}\right )}{d e}\) \(161\)
default \(\frac {2 a \sqrt {d e x +c e}+2 b \left (\sqrt {d e x +c e}\, \operatorname {arcsinh}\left (\frac {d e x +c e}{e}\right )-\frac {2 i \sqrt {1-\frac {i \left (d e x +c e \right )}{e}}\, \sqrt {1+\frac {i \left (d e x +c e \right )}{e}}\, \left (\operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {\frac {i}{e}}, i\right )-\operatorname {EllipticE}\left (\sqrt {d e x +c e}\, \sqrt {\frac {i}{e}}, i\right )\right )}{\sqrt {\frac {i}{e}}\, \sqrt {\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}\right )}{d e}\) \(161\)
parts \(\frac {2 a \sqrt {d e x +c e}}{d e}+\frac {2 b \left (\sqrt {d e x +c e}\, \operatorname {arcsinh}\left (\frac {d e x +c e}{e}\right )-\frac {2 i \sqrt {1-\frac {i \left (d e x +c e \right )}{e}}\, \sqrt {1+\frac {i \left (d e x +c e \right )}{e}}\, \left (\operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {\frac {i}{e}}, i\right )-\operatorname {EllipticE}\left (\sqrt {d e x +c e}\, \sqrt {\frac {i}{e}}, i\right )\right )}{\sqrt {\frac {i}{e}}\, \sqrt {\frac {\left (d e x +c e \right )^{2}}{e^{2}}+1}}\right )}{d e}\) \(167\)

input
int((a+b*arcsinh(d*x+c))/(d*e*x+c*e)^(1/2),x,method=_RETURNVERBOSE)
 
output
2/d/e*(a*(d*e*x+c*e)^(1/2)+b*((d*e*x+c*e)^(1/2)*arcsinh(1/e*(d*e*x+c*e))-2 
*I/(I/e)^(1/2)*(1-I/e*(d*e*x+c*e))^(1/2)*(1+I/e*(d*e*x+c*e))^(1/2)/(1/e^2* 
(d*e*x+c*e)^2+1)^(1/2)*(EllipticF((d*e*x+c*e)^(1/2)*(I/e)^(1/2),I)-Ellipti 
cE((d*e*x+c*e)^(1/2)*(I/e)^(1/2),I))))
 
3.3.32.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.42 \[ \int \frac {a+b \text {arcsinh}(c+d x)}{\sqrt {c e+d e x}} \, dx=\frac {2 \, {\left (\sqrt {d e x + c e} b d \log \left (d x + c + \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} + 1}\right ) + \sqrt {d e x + c e} a d + 2 \, \sqrt {d^{3} e} b {\rm weierstrassZeta}\left (-\frac {4}{d^{2}}, 0, {\rm weierstrassPInverse}\left (-\frac {4}{d^{2}}, 0, \frac {d x + c}{d}\right )\right )\right )}}{d^{2} e} \]

input
integrate((a+b*arcsinh(d*x+c))/(d*e*x+c*e)^(1/2),x, algorithm="fricas")
 
output
2*(sqrt(d*e*x + c*e)*b*d*log(d*x + c + sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1)) 
+ sqrt(d*e*x + c*e)*a*d + 2*sqrt(d^3*e)*b*weierstrassZeta(-4/d^2, 0, weier 
strassPInverse(-4/d^2, 0, (d*x + c)/d)))/(d^2*e)
 
3.3.32.6 Sympy [F]

\[ \int \frac {a+b \text {arcsinh}(c+d x)}{\sqrt {c e+d e x}} \, dx=\int \frac {a + b \operatorname {asinh}{\left (c + d x \right )}}{\sqrt {e \left (c + d x\right )}}\, dx \]

input
integrate((a+b*asinh(d*x+c))/(d*e*x+c*e)**(1/2),x)
 
output
Integral((a + b*asinh(c + d*x))/sqrt(e*(c + d*x)), x)
 
3.3.32.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \text {arcsinh}(c+d x)}{\sqrt {c e+d e x}} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+b*arcsinh(d*x+c))/(d*e*x+c*e)^(1/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.3.32.8 Giac [F]

\[ \int \frac {a+b \text {arcsinh}(c+d x)}{\sqrt {c e+d e x}} \, dx=\int { \frac {b \operatorname {arsinh}\left (d x + c\right ) + a}{\sqrt {d e x + c e}} \,d x } \]

input
integrate((a+b*arcsinh(d*x+c))/(d*e*x+c*e)^(1/2),x, algorithm="giac")
 
output
integrate((b*arcsinh(d*x + c) + a)/sqrt(d*e*x + c*e), x)
 
3.3.32.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \text {arcsinh}(c+d x)}{\sqrt {c e+d e x}} \, dx=\int \frac {a+b\,\mathrm {asinh}\left (c+d\,x\right )}{\sqrt {c\,e+d\,e\,x}} \,d x \]

input
int((a + b*asinh(c + d*x))/(c*e + d*e*x)^(1/2),x)
 
output
int((a + b*asinh(c + d*x))/(c*e + d*e*x)^(1/2), x)