3.3.65 \(\int \frac {\sqrt {1+a^2+2 a b x+b^2 x^2}}{\text {arcsinh}(a+b x)^3} \, dx\) [265]

3.3.65.1 Optimal result
3.3.65.2 Mathematica [A] (verified)
3.3.65.3 Rubi [A] (verified)
3.3.65.4 Maple [A] (verified)
3.3.65.5 Fricas [F]
3.3.65.6 Sympy [F]
3.3.65.7 Maxima [F]
3.3.65.8 Giac [F]
3.3.65.9 Mupad [F(-1)]

3.3.65.1 Optimal result

Integrand size = 30, antiderivative size = 71 \[ \int \frac {\sqrt {1+a^2+2 a b x+b^2 x^2}}{\text {arcsinh}(a+b x)^3} \, dx=\frac {-1-(a+b x)^2}{2 b \text {arcsinh}(a+b x)^2}-\frac {(a+b x) \sqrt {1+(a+b x)^2}}{b \text {arcsinh}(a+b x)}+\frac {\text {Chi}(2 \text {arcsinh}(a+b x))}{b} \]

output
1/2*(-1-(b*x+a)^2)/b/arcsinh(b*x+a)^2+Chi(2*arcsinh(b*x+a))/b-(b*x+a)*(1+( 
b*x+a)^2)^(1/2)/b/arcsinh(b*x+a)
 
3.3.65.2 Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.20 \[ \int \frac {\sqrt {1+a^2+2 a b x+b^2 x^2}}{\text {arcsinh}(a+b x)^3} \, dx=-\frac {1+a^2+2 a b x+b^2 x^2+2 (a+b x) \sqrt {1+a^2+2 a b x+b^2 x^2} \text {arcsinh}(a+b x)-2 \text {arcsinh}(a+b x)^2 \text {Chi}(2 \text {arcsinh}(a+b x))}{2 b \text {arcsinh}(a+b x)^2} \]

input
Integrate[Sqrt[1 + a^2 + 2*a*b*x + b^2*x^2]/ArcSinh[a + b*x]^3,x]
 
output
-1/2*(1 + a^2 + 2*a*b*x + b^2*x^2 + 2*(a + b*x)*Sqrt[1 + a^2 + 2*a*b*x + b 
^2*x^2]*ArcSinh[a + b*x] - 2*ArcSinh[a + b*x]^2*CoshIntegral[2*ArcSinh[a + 
 b*x]])/(b*ArcSinh[a + b*x]^2)
 
3.3.65.3 Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.89, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6275, 6205, 6193, 3042, 3782}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a^2+2 a b x+b^2 x^2+1}}{\text {arcsinh}(a+b x)^3} \, dx\)

\(\Big \downarrow \) 6275

\(\displaystyle \frac {\int \frac {\sqrt {(a+b x)^2+1}}{\text {arcsinh}(a+b x)^3}d(a+b x)}{b}\)

\(\Big \downarrow \) 6205

\(\displaystyle \frac {\int \frac {a+b x}{\text {arcsinh}(a+b x)^2}d(a+b x)-\frac {(a+b x)^2+1}{2 \text {arcsinh}(a+b x)^2}}{b}\)

\(\Big \downarrow \) 6193

\(\displaystyle \frac {\int \frac {\cosh (2 \text {arcsinh}(a+b x))}{\text {arcsinh}(a+b x)}d\text {arcsinh}(a+b x)-\frac {\sqrt {(a+b x)^2+1} (a+b x)}{\text {arcsinh}(a+b x)}-\frac {(a+b x)^2+1}{2 \text {arcsinh}(a+b x)^2}}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sin \left (2 i \text {arcsinh}(a+b x)+\frac {\pi }{2}\right )}{\text {arcsinh}(a+b x)}d\text {arcsinh}(a+b x)-\frac {\sqrt {(a+b x)^2+1} (a+b x)}{\text {arcsinh}(a+b x)}-\frac {(a+b x)^2+1}{2 \text {arcsinh}(a+b x)^2}}{b}\)

\(\Big \downarrow \) 3782

\(\displaystyle \frac {\text {Chi}(2 \text {arcsinh}(a+b x))-\frac {\sqrt {(a+b x)^2+1} (a+b x)}{\text {arcsinh}(a+b x)}-\frac {(a+b x)^2+1}{2 \text {arcsinh}(a+b x)^2}}{b}\)

input
Int[Sqrt[1 + a^2 + 2*a*b*x + b^2*x^2]/ArcSinh[a + b*x]^3,x]
 
output
(-1/2*(1 + (a + b*x)^2)/ArcSinh[a + b*x]^2 - ((a + b*x)*Sqrt[1 + (a + b*x) 
^2])/ArcSinh[a + b*x] + CoshIntegral[2*ArcSinh[a + b*x]])/b
 

3.3.65.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3782
Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbo 
l] :> Simp[CoshIntegral[c*f*(fz/d) + f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz 
}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]
 

rule 6193
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[ 
x^m*Sqrt[1 + c^2*x^2]*((a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1))), x] - Si 
mp[1/(b^2*c^(m + 1)*(n + 1))   Subst[Int[ExpandTrigReduce[x^(n + 1), Sinh[- 
a/b + x/b]^(m - 1)*(m + (m + 1)*Sinh[-a/b + x/b]^2), x], x], x, a + b*ArcSi 
nh[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, - 
1]
 

rule 6205
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_)^2)^(p_.), x 
_Symbol] :> Simp[Simp[Sqrt[1 + c^2*x^2]*(d + e*x^2)^p]*((a + b*ArcSinh[c*x] 
)^(n + 1)/(b*c*(n + 1))), x] - Simp[c*((2*p + 1)/(b*(n + 1)))*Simp[(d + e*x 
^2)^p/(1 + c^2*x^2)^p]   Int[x*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x]) 
^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && LtQ[n, 
 -1]
 

rule 6275
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((A_.) + (B_.)*(x_) + 
(C_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[1/d   Subst[Int[(C/d^2 + (C/d^2)*x^2 
)^p*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, A, B, C 
, n, p}, x] && EqQ[B*(1 + c^2) - 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0]
 
3.3.65.4 Maple [A] (verified)

Time = 0.59 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.89

method result size
default \(\frac {4 \,\operatorname {Chi}\left (2 \,\operatorname {arcsinh}\left (b x +a \right )\right ) \operatorname {arcsinh}\left (b x +a \right )^{2}-2 \sinh \left (2 \,\operatorname {arcsinh}\left (b x +a \right )\right ) \operatorname {arcsinh}\left (b x +a \right )-\cosh \left (2 \,\operatorname {arcsinh}\left (b x +a \right )\right )-1}{4 b \operatorname {arcsinh}\left (b x +a \right )^{2}}\) \(63\)

input
int((b^2*x^2+2*a*b*x+a^2+1)^(1/2)/arcsinh(b*x+a)^3,x,method=_RETURNVERBOSE 
)
 
output
1/4/b*(4*Chi(2*arcsinh(b*x+a))*arcsinh(b*x+a)^2-2*sinh(2*arcsinh(b*x+a))*a 
rcsinh(b*x+a)-cosh(2*arcsinh(b*x+a))-1)/arcsinh(b*x+a)^2
 
3.3.65.5 Fricas [F]

\[ \int \frac {\sqrt {1+a^2+2 a b x+b^2 x^2}}{\text {arcsinh}(a+b x)^3} \, dx=\int { \frac {\sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}{\operatorname {arsinh}\left (b x + a\right )^{3}} \,d x } \]

input
integrate((b^2*x^2+2*a*b*x+a^2+1)^(1/2)/arcsinh(b*x+a)^3,x, algorithm="fri 
cas")
 
output
integral(sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)/arcsinh(b*x + a)^3, x)
 
3.3.65.6 Sympy [F]

\[ \int \frac {\sqrt {1+a^2+2 a b x+b^2 x^2}}{\text {arcsinh}(a+b x)^3} \, dx=\int \frac {\sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}{\operatorname {asinh}^{3}{\left (a + b x \right )}}\, dx \]

input
integrate((b**2*x**2+2*a*b*x+a**2+1)**(1/2)/asinh(b*x+a)**3,x)
 
output
Integral(sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)/asinh(a + b*x)**3, x)
 
3.3.65.7 Maxima [F]

\[ \int \frac {\sqrt {1+a^2+2 a b x+b^2 x^2}}{\text {arcsinh}(a+b x)^3} \, dx=\int { \frac {\sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}{\operatorname {arsinh}\left (b x + a\right )^{3}} \,d x } \]

input
integrate((b^2*x^2+2*a*b*x+a^2+1)^(1/2)/arcsinh(b*x+a)^3,x, algorithm="max 
ima")
 
output
-1/2*((b^4*x^4 + 4*a*b^3*x^3 + a^4 + (6*a^2*b^2 + b^2)*x^2 + a^2 + 2*(2*a^ 
3*b + a*b)*x)*(b^2*x^2 + 2*a*b*x + a^2 + 1)^2 + (3*b^5*x^5 + 15*a*b^4*x^4 
+ 3*a^5 + 5*(6*a^2*b^3 + b^3)*x^3 + 5*a^3 + 15*(2*a^3*b^2 + a*b^2)*x^2 + ( 
15*a^4*b + 15*a^2*b + 2*b)*x + 2*a)*(b^2*x^2 + 2*a*b*x + a^2 + 1)^(3/2) + 
(3*b^6*x^6 + 18*a*b^5*x^5 + 3*a^6 + (45*a^2*b^4 + 7*b^4)*x^4 + 7*a^4 + 4*( 
15*a^3*b^3 + 7*a*b^3)*x^3 + (45*a^4*b^2 + 42*a^2*b^2 + 5*b^2)*x^2 + 5*a^2 
+ 2*(9*a^5*b + 14*a^3*b + 5*a*b)*x + 1)*(b^2*x^2 + 2*a*b*x + a^2 + 1) + (( 
2*b^4*x^4 + 8*a*b^3*x^3 + 2*a^4 + (12*a^2*b^2 + b^2)*x^2 + a^2 + 2*(4*a^3* 
b + a*b)*x - 1)*(b^2*x^2 + 2*a*b*x + a^2 + 1)^2 + (6*b^5*x^5 + 30*a*b^4*x^ 
4 + 6*a^5 + (60*a^2*b^3 + 7*b^3)*x^3 + 7*a^3 + 3*(20*a^3*b^2 + 7*a*b^2)*x^ 
2 + (30*a^4*b + 21*a^2*b + b)*x + a)*(b^2*x^2 + 2*a*b*x + a^2 + 1)^(3/2) + 
 (6*b^6*x^6 + 36*a*b^5*x^5 + 6*a^6 + (90*a^2*b^4 + 11*b^4)*x^4 + 11*a^4 + 
4*(30*a^3*b^3 + 11*a*b^3)*x^3 + 6*(15*a^4*b^2 + 11*a^2*b^2 + b^2)*x^2 + 6* 
a^2 + 4*(9*a^5*b + 11*a^3*b + 3*a*b)*x + 1)*(b^2*x^2 + 2*a*b*x + a^2 + 1) 
+ (2*b^7*x^7 + 14*a*b^6*x^6 + 2*a^7 + (42*a^2*b^5 + 5*b^5)*x^5 + 5*a^5 + 5 
*(14*a^3*b^4 + 5*a*b^4)*x^4 + 2*(35*a^4*b^3 + 25*a^2*b^3 + 2*b^3)*x^3 + 4* 
a^3 + 2*(21*a^5*b^2 + 25*a^3*b^2 + 6*a*b^2)*x^2 + (14*a^6*b + 25*a^4*b + 1 
2*a^2*b + b)*x + a)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1))*log(b*x + a + sqrt( 
b^2*x^2 + 2*a*b*x + a^2 + 1)) + (b^7*x^7 + 7*a*b^6*x^6 + a^7 + 3*(7*a^2*b^ 
5 + b^5)*x^5 + 3*a^5 + 5*(7*a^3*b^4 + 3*a*b^4)*x^4 + (35*a^4*b^3 + 30*a...
 
3.3.65.8 Giac [F]

\[ \int \frac {\sqrt {1+a^2+2 a b x+b^2 x^2}}{\text {arcsinh}(a+b x)^3} \, dx=\int { \frac {\sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}{\operatorname {arsinh}\left (b x + a\right )^{3}} \,d x } \]

input
integrate((b^2*x^2+2*a*b*x+a^2+1)^(1/2)/arcsinh(b*x+a)^3,x, algorithm="gia 
c")
 
output
integrate(sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)/arcsinh(b*x + a)^3, x)
 
3.3.65.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {1+a^2+2 a b x+b^2 x^2}}{\text {arcsinh}(a+b x)^3} \, dx=\int \frac {\sqrt {a^2+2\,a\,b\,x+b^2\,x^2+1}}{{\mathrm {asinh}\left (a+b\,x\right )}^3} \,d x \]

input
int((a^2 + b^2*x^2 + 2*a*b*x + 1)^(1/2)/asinh(a + b*x)^3,x)
 
output
int((a^2 + b^2*x^2 + 2*a*b*x + 1)^(1/2)/asinh(a + b*x)^3, x)