3.3.71 \(\int \frac {(1+a^2+2 a b x+b^2 x^2)^{3/2}}{\text {arcsinh}(a+b x)^3} \, dx\) [271]

3.3.71.1 Optimal result
3.3.71.2 Mathematica [A] (verified)
3.3.71.3 Rubi [A] (verified)
3.3.71.4 Maple [A] (verified)
3.3.71.5 Fricas [F]
3.3.71.6 Sympy [F]
3.3.71.7 Maxima [F]
3.3.71.8 Giac [F]
3.3.71.9 Mupad [F(-1)]

3.3.71.1 Optimal result

Integrand size = 30, antiderivative size = 84 \[ \int \frac {\left (1+a^2+2 a b x+b^2 x^2\right )^{3/2}}{\text {arcsinh}(a+b x)^3} \, dx=-\frac {\left (1+(a+b x)^2\right )^2}{2 b \text {arcsinh}(a+b x)^2}-\frac {2 (a+b x) \left (1+(a+b x)^2\right )^{3/2}}{b \text {arcsinh}(a+b x)}+\frac {\text {Chi}(2 \text {arcsinh}(a+b x))}{b}+\frac {\text {Chi}(4 \text {arcsinh}(a+b x))}{b} \]

output
-1/2*(1+(b*x+a)^2)^2/b/arcsinh(b*x+a)^2-2*(b*x+a)*(1+(b*x+a)^2)^(3/2)/b/ar 
csinh(b*x+a)+Chi(2*arcsinh(b*x+a))/b+Chi(4*arcsinh(b*x+a))/b
 
3.3.71.2 Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.29 \[ \int \frac {\left (1+a^2+2 a b x+b^2 x^2\right )^{3/2}}{\text {arcsinh}(a+b x)^3} \, dx=\frac {-\frac {\left (1+a^2+2 a b x+b^2 x^2\right ) \left (1+a^2+2 a b x+b^2 x^2+4 (a+b x) \sqrt {1+a^2+2 a b x+b^2 x^2} \text {arcsinh}(a+b x)\right )}{\text {arcsinh}(a+b x)^2}+2 \text {Chi}(2 \text {arcsinh}(a+b x))+2 \text {Chi}(4 \text {arcsinh}(a+b x))}{2 b} \]

input
Integrate[(1 + a^2 + 2*a*b*x + b^2*x^2)^(3/2)/ArcSinh[a + b*x]^3,x]
 
output
(-(((1 + a^2 + 2*a*b*x + b^2*x^2)*(1 + a^2 + 2*a*b*x + b^2*x^2 + 4*(a + b* 
x)*Sqrt[1 + a^2 + 2*a*b*x + b^2*x^2]*ArcSinh[a + b*x]))/ArcSinh[a + b*x]^2 
) + 2*CoshIntegral[2*ArcSinh[a + b*x]] + 2*CoshIntegral[4*ArcSinh[a + b*x] 
])/(2*b)
 
3.3.71.3 Rubi [A] (verified)

Time = 1.04 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.31, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6275, 6205, 6229, 6206, 3042, 3793, 2009, 6234, 5971, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a^2+2 a b x+b^2 x^2+1\right )^{3/2}}{\text {arcsinh}(a+b x)^3} \, dx\)

\(\Big \downarrow \) 6275

\(\displaystyle \frac {\int \frac {\left ((a+b x)^2+1\right )^{3/2}}{\text {arcsinh}(a+b x)^3}d(a+b x)}{b}\)

\(\Big \downarrow \) 6205

\(\displaystyle \frac {2 \int \frac {(a+b x) \left ((a+b x)^2+1\right )}{\text {arcsinh}(a+b x)^2}d(a+b x)-\frac {\left ((a+b x)^2+1\right )^2}{2 \text {arcsinh}(a+b x)^2}}{b}\)

\(\Big \downarrow \) 6229

\(\displaystyle \frac {2 \left (\int \frac {\sqrt {(a+b x)^2+1}}{\text {arcsinh}(a+b x)}d(a+b x)+4 \int \frac {(a+b x)^2 \sqrt {(a+b x)^2+1}}{\text {arcsinh}(a+b x)}d(a+b x)-\frac {(a+b x) \left ((a+b x)^2+1\right )^{3/2}}{\text {arcsinh}(a+b x)}\right )-\frac {\left ((a+b x)^2+1\right )^2}{2 \text {arcsinh}(a+b x)^2}}{b}\)

\(\Big \downarrow \) 6206

\(\displaystyle \frac {2 \left (4 \int \frac {(a+b x)^2 \sqrt {(a+b x)^2+1}}{\text {arcsinh}(a+b x)}d(a+b x)+\int \frac {(a+b x)^2+1}{\text {arcsinh}(a+b x)}d\text {arcsinh}(a+b x)-\frac {(a+b x) \left ((a+b x)^2+1\right )^{3/2}}{\text {arcsinh}(a+b x)}\right )-\frac {\left ((a+b x)^2+1\right )^2}{2 \text {arcsinh}(a+b x)^2}}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\left ((a+b x)^2+1\right )^2}{2 \text {arcsinh}(a+b x)^2}+2 \left (4 \int \frac {(a+b x)^2 \sqrt {(a+b x)^2+1}}{\text {arcsinh}(a+b x)}d(a+b x)+\int \frac {\sin \left (i \text {arcsinh}(a+b x)+\frac {\pi }{2}\right )^2}{\text {arcsinh}(a+b x)}d\text {arcsinh}(a+b x)-\frac {(a+b x) \left ((a+b x)^2+1\right )^{3/2}}{\text {arcsinh}(a+b x)}\right )}{b}\)

\(\Big \downarrow \) 3793

\(\displaystyle \frac {2 \left (4 \int \frac {(a+b x)^2 \sqrt {(a+b x)^2+1}}{\text {arcsinh}(a+b x)}d(a+b x)+\int \left (\frac {\cosh (2 \text {arcsinh}(a+b x))}{2 \text {arcsinh}(a+b x)}+\frac {1}{2 \text {arcsinh}(a+b x)}\right )d\text {arcsinh}(a+b x)-\frac {(a+b x) \left ((a+b x)^2+1\right )^{3/2}}{\text {arcsinh}(a+b x)}\right )-\frac {\left ((a+b x)^2+1\right )^2}{2 \text {arcsinh}(a+b x)^2}}{b}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 \left (4 \int \frac {(a+b x)^2 \sqrt {(a+b x)^2+1}}{\text {arcsinh}(a+b x)}d(a+b x)+\frac {1}{2} \text {Chi}(2 \text {arcsinh}(a+b x))-\frac {(a+b x) \left ((a+b x)^2+1\right )^{3/2}}{\text {arcsinh}(a+b x)}+\frac {1}{2} \log (\text {arcsinh}(a+b x))\right )-\frac {\left ((a+b x)^2+1\right )^2}{2 \text {arcsinh}(a+b x)^2}}{b}\)

\(\Big \downarrow \) 6234

\(\displaystyle \frac {2 \left (4 \int \frac {(a+b x)^2 \left ((a+b x)^2+1\right )}{\text {arcsinh}(a+b x)}d\text {arcsinh}(a+b x)+\frac {1}{2} \text {Chi}(2 \text {arcsinh}(a+b x))-\frac {(a+b x) \left ((a+b x)^2+1\right )^{3/2}}{\text {arcsinh}(a+b x)}+\frac {1}{2} \log (\text {arcsinh}(a+b x))\right )-\frac {\left ((a+b x)^2+1\right )^2}{2 \text {arcsinh}(a+b x)^2}}{b}\)

\(\Big \downarrow \) 5971

\(\displaystyle \frac {2 \left (4 \int \left (\frac {\cosh (4 \text {arcsinh}(a+b x))}{8 \text {arcsinh}(a+b x)}-\frac {1}{8 \text {arcsinh}(a+b x)}\right )d\text {arcsinh}(a+b x)+\frac {1}{2} \text {Chi}(2 \text {arcsinh}(a+b x))-\frac {(a+b x) \left ((a+b x)^2+1\right )^{3/2}}{\text {arcsinh}(a+b x)}+\frac {1}{2} \log (\text {arcsinh}(a+b x))\right )-\frac {\left ((a+b x)^2+1\right )^2}{2 \text {arcsinh}(a+b x)^2}}{b}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 \left (\frac {1}{2} \text {Chi}(2 \text {arcsinh}(a+b x))+4 \left (\frac {1}{8} \text {Chi}(4 \text {arcsinh}(a+b x))-\frac {1}{8} \log (\text {arcsinh}(a+b x))\right )-\frac {(a+b x) \left ((a+b x)^2+1\right )^{3/2}}{\text {arcsinh}(a+b x)}+\frac {1}{2} \log (\text {arcsinh}(a+b x))\right )-\frac {\left ((a+b x)^2+1\right )^2}{2 \text {arcsinh}(a+b x)^2}}{b}\)

input
Int[(1 + a^2 + 2*a*b*x + b^2*x^2)^(3/2)/ArcSinh[a + b*x]^3,x]
 
output
(-1/2*(1 + (a + b*x)^2)^2/ArcSinh[a + b*x]^2 + 2*(-(((a + b*x)*(1 + (a + b 
*x)^2)^(3/2))/ArcSinh[a + b*x]) + CoshIntegral[2*ArcSinh[a + b*x]]/2 + 4*( 
CoshIntegral[4*ArcSinh[a + b*x]]/8 - Log[ArcSinh[a + b*x]]/8) + Log[ArcSin 
h[a + b*x]]/2))/b
 

3.3.71.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3793
Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> In 
t[ExpandTrigReduce[(c + d*x)^m, Sin[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f 
, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1]))
 

rule 5971
Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + 
(b_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sinh[a + 
b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] & 
& IGtQ[p, 0]
 

rule 6205
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_)^2)^(p_.), x 
_Symbol] :> Simp[Simp[Sqrt[1 + c^2*x^2]*(d + e*x^2)^p]*((a + b*ArcSinh[c*x] 
)^(n + 1)/(b*c*(n + 1))), x] - Simp[c*((2*p + 1)/(b*(n + 1)))*Simp[(d + e*x 
^2)^p/(1 + c^2*x^2)^p]   Int[x*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x]) 
^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && LtQ[n, 
 -1]
 

rule 6206
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), 
x_Symbol] :> Simp[(1/(b*c))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]   Subst[Int 
[x^n*Cosh[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a 
, b, c, d, e, n}, x] && EqQ[e, c^2*d] && IGtQ[2*p, 0]
 

rule 6229
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(f*x)^m*Sqrt[1 + c^2*x^2]*(d + e*x^2)^p 
*((a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1))), x] + (-Simp[f*(m/(b*c*(n + 1 
)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]   Int[(f*x)^(m - 1)*(1 + c^2*x^2)^( 
p - 1/2)*(a + b*ArcSinh[c*x])^(n + 1), x], x] - Simp[c*((m + 2*p + 1)/(b*f* 
(n + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]   Int[(f*x)^(m + 1)*(1 + c^2* 
x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n + 1), x], x]) /; FreeQ[{a, b, c, d, 
e, f}, x] && EqQ[e, c^2*d] && LtQ[n, -1] && IGtQ[2*p, 0] && NeQ[m + 2*p + 1 
, 0] && IGtQ[m, -3]
 

rule 6234
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_) 
^2)^(p_.), x_Symbol] :> Simp[(1/(b*c^(m + 1)))*Simp[(d + e*x^2)^p/(1 + c^2* 
x^2)^p]   Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b]^(2*p + 1), x], 
x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] 
 && IGtQ[2*p + 2, 0] && IGtQ[m, 0]
 

rule 6275
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((A_.) + (B_.)*(x_) + 
(C_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[1/d   Subst[Int[(C/d^2 + (C/d^2)*x^2 
)^p*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, A, B, C 
, n, p}, x] && EqQ[B*(1 + c^2) - 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0]
 
3.3.71.4 Maple [A] (verified)

Time = 0.87 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.31

method result size
default \(\frac {16 \,\operatorname {Chi}\left (2 \,\operatorname {arcsinh}\left (b x +a \right )\right ) \operatorname {arcsinh}\left (b x +a \right )^{2}+16 \,\operatorname {Chi}\left (4 \,\operatorname {arcsinh}\left (b x +a \right )\right ) \operatorname {arcsinh}\left (b x +a \right )^{2}-8 \sinh \left (2 \,\operatorname {arcsinh}\left (b x +a \right )\right ) \operatorname {arcsinh}\left (b x +a \right )-4 \sinh \left (4 \,\operatorname {arcsinh}\left (b x +a \right )\right ) \operatorname {arcsinh}\left (b x +a \right )-4 \cosh \left (2 \,\operatorname {arcsinh}\left (b x +a \right )\right )-\cosh \left (4 \,\operatorname {arcsinh}\left (b x +a \right )\right )-3}{16 b \operatorname {arcsinh}\left (b x +a \right )^{2}}\) \(110\)

input
int((b^2*x^2+2*a*b*x+a^2+1)^(3/2)/arcsinh(b*x+a)^3,x,method=_RETURNVERBOSE 
)
 
output
1/16/b*(16*Chi(2*arcsinh(b*x+a))*arcsinh(b*x+a)^2+16*Chi(4*arcsinh(b*x+a)) 
*arcsinh(b*x+a)^2-8*sinh(2*arcsinh(b*x+a))*arcsinh(b*x+a)-4*sinh(4*arcsinh 
(b*x+a))*arcsinh(b*x+a)-4*cosh(2*arcsinh(b*x+a))-cosh(4*arcsinh(b*x+a))-3) 
/arcsinh(b*x+a)^2
 
3.3.71.5 Fricas [F]

\[ \int \frac {\left (1+a^2+2 a b x+b^2 x^2\right )^{3/2}}{\text {arcsinh}(a+b x)^3} \, dx=\int { \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2} + 1\right )}^{\frac {3}{2}}}{\operatorname {arsinh}\left (b x + a\right )^{3}} \,d x } \]

input
integrate((b^2*x^2+2*a*b*x+a^2+1)^(3/2)/arcsinh(b*x+a)^3,x, algorithm="fri 
cas")
 
output
integral((b^2*x^2 + 2*a*b*x + a^2 + 1)^(3/2)/arcsinh(b*x + a)^3, x)
 
3.3.71.6 Sympy [F]

\[ \int \frac {\left (1+a^2+2 a b x+b^2 x^2\right )^{3/2}}{\text {arcsinh}(a+b x)^3} \, dx=\int \frac {\left (a^{2} + 2 a b x + b^{2} x^{2} + 1\right )^{\frac {3}{2}}}{\operatorname {asinh}^{3}{\left (a + b x \right )}}\, dx \]

input
integrate((b**2*x**2+2*a*b*x+a**2+1)**(3/2)/asinh(b*x+a)**3,x)
 
output
Integral((a**2 + 2*a*b*x + b**2*x**2 + 1)**(3/2)/asinh(a + b*x)**3, x)
 
3.3.71.7 Maxima [F]

\[ \int \frac {\left (1+a^2+2 a b x+b^2 x^2\right )^{3/2}}{\text {arcsinh}(a+b x)^3} \, dx=\int { \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2} + 1\right )}^{\frac {3}{2}}}{\operatorname {arsinh}\left (b x + a\right )^{3}} \,d x } \]

input
integrate((b^2*x^2+2*a*b*x+a^2+1)^(3/2)/arcsinh(b*x+a)^3,x, algorithm="max 
ima")
 
output
-1/2*((b^6*x^6 + 6*a*b^5*x^5 + a^6 + (15*a^2*b^4 + 2*b^4)*x^4 + 2*a^4 + 4* 
(5*a^3*b^3 + 2*a*b^3)*x^3 + (15*a^4*b^2 + 12*a^2*b^2 + b^2)*x^2 + a^2 + 2* 
(3*a^5*b + 4*a^3*b + a*b)*x)*(b^2*x^2 + 2*a*b*x + a^2 + 1)^2 + (3*b^7*x^7 
+ 21*a*b^6*x^6 + 3*a^7 + (63*a^2*b^5 + 8*b^5)*x^5 + 8*a^5 + 5*(21*a^3*b^4 
+ 8*a*b^4)*x^4 + (105*a^4*b^3 + 80*a^2*b^3 + 7*b^3)*x^3 + 7*a^3 + (63*a^5* 
b^2 + 80*a^3*b^2 + 21*a*b^2)*x^2 + (21*a^6*b + 40*a^4*b + 21*a^2*b + 2*b)* 
x + 2*a)*(b^2*x^2 + 2*a*b*x + a^2 + 1)^(3/2) + (3*b^8*x^8 + 24*a*b^7*x^7 + 
 3*a^8 + 2*(42*a^2*b^6 + 5*b^6)*x^6 + 10*a^6 + 12*(14*a^3*b^5 + 5*a*b^5)*x 
^5 + 6*(35*a^4*b^4 + 25*a^2*b^4 + 2*b^4)*x^4 + 12*a^4 + 8*(21*a^5*b^3 + 25 
*a^3*b^3 + 6*a*b^3)*x^3 + 6*(14*a^6*b^2 + 25*a^4*b^2 + 12*a^2*b^2 + b^2)*x 
^2 + 6*a^2 + 12*(2*a^7*b + 5*a^5*b + 4*a^3*b + a*b)*x + 1)*(b^2*x^2 + 2*a* 
b*x + a^2 + 1) + ((4*b^6*x^6 + 24*a*b^5*x^5 + 4*a^6 + (60*a^2*b^4 + 7*b^4) 
*x^4 + 7*a^4 + 4*(20*a^3*b^3 + 7*a*b^3)*x^3 + 2*(30*a^4*b^2 + 21*a^2*b^2 + 
 b^2)*x^2 + 2*a^2 + 4*(6*a^5*b + 7*a^3*b + a*b)*x - 1)*(b^2*x^2 + 2*a*b*x 
+ a^2 + 1)^2 + 3*(4*b^7*x^7 + 28*a*b^6*x^6 + 4*a^7 + 3*(28*a^2*b^5 + 3*b^5 
)*x^5 + 9*a^5 + 5*(28*a^3*b^4 + 9*a*b^4)*x^4 + 2*(70*a^4*b^3 + 45*a^2*b^3 
+ 3*b^3)*x^3 + 6*a^3 + 6*(14*a^5*b^2 + 15*a^3*b^2 + 3*a*b^2)*x^2 + (28*a^6 
*b + 45*a^4*b + 18*a^2*b + b)*x + a)*(b^2*x^2 + 2*a*b*x + a^2 + 1)^(3/2) + 
 (12*b^8*x^8 + 96*a*b^7*x^7 + 12*a^8 + 3*(112*a^2*b^6 + 11*b^6)*x^6 + 33*a 
^6 + 6*(112*a^3*b^5 + 33*a*b^5)*x^5 + (840*a^4*b^4 + 495*a^2*b^4 + 31*b...
 
3.3.71.8 Giac [F]

\[ \int \frac {\left (1+a^2+2 a b x+b^2 x^2\right )^{3/2}}{\text {arcsinh}(a+b x)^3} \, dx=\int { \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2} + 1\right )}^{\frac {3}{2}}}{\operatorname {arsinh}\left (b x + a\right )^{3}} \,d x } \]

input
integrate((b^2*x^2+2*a*b*x+a^2+1)^(3/2)/arcsinh(b*x+a)^3,x, algorithm="gia 
c")
 
output
integrate((b^2*x^2 + 2*a*b*x + a^2 + 1)^(3/2)/arcsinh(b*x + a)^3, x)
 
3.3.71.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (1+a^2+2 a b x+b^2 x^2\right )^{3/2}}{\text {arcsinh}(a+b x)^3} \, dx=\int \frac {{\left (a^2+2\,a\,b\,x+b^2\,x^2+1\right )}^{3/2}}{{\mathrm {asinh}\left (a+b\,x\right )}^3} \,d x \]

input
int((a^2 + b^2*x^2 + 2*a*b*x + 1)^(3/2)/asinh(a + b*x)^3,x)
 
output
int((a^2 + b^2*x^2 + 2*a*b*x + 1)^(3/2)/asinh(a + b*x)^3, x)