3.1.20 \(\int \frac {(d+e x)^2}{a+b \text {arcsinh}(c x)} \, dx\) [20]

3.1.20.1 Optimal result
3.1.20.2 Mathematica [A] (verified)
3.1.20.3 Rubi [A] (verified)
3.1.20.4 Maple [A] (verified)
3.1.20.5 Fricas [F]
3.1.20.6 Sympy [F]
3.1.20.7 Maxima [F]
3.1.20.8 Giac [F]
3.1.20.9 Mupad [F(-1)]

3.1.20.1 Optimal result

Integrand size = 18, antiderivative size = 245 \[ \int \frac {(d+e x)^2}{a+b \text {arcsinh}(c x)} \, dx=\frac {d^2 \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right )}{b c}-\frac {e^2 \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right )}{4 b c^3}+\frac {e^2 \cosh \left (\frac {3 a}{b}\right ) \text {Chi}\left (\frac {3 a}{b}+3 \text {arcsinh}(c x)\right )}{4 b c^3}-\frac {d e \text {Chi}\left (\frac {2 a}{b}+2 \text {arcsinh}(c x)\right ) \sinh \left (\frac {2 a}{b}\right )}{b c^2}-\frac {d^2 \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right )}{b c}+\frac {e^2 \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right )}{4 b c^3}+\frac {d e \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 a}{b}+2 \text {arcsinh}(c x)\right )}{b c^2}-\frac {e^2 \sinh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 a}{b}+3 \text {arcsinh}(c x)\right )}{4 b c^3} \]

output
d^2*Chi(a/b+arcsinh(c*x))*cosh(a/b)/b/c-1/4*e^2*Chi(a/b+arcsinh(c*x))*cosh 
(a/b)/b/c^3+1/4*e^2*Chi(3*a/b+3*arcsinh(c*x))*cosh(3*a/b)/b/c^3+d*e*cosh(2 
*a/b)*Shi(2*a/b+2*arcsinh(c*x))/b/c^2-d^2*Shi(a/b+arcsinh(c*x))*sinh(a/b)/ 
b/c+1/4*e^2*Shi(a/b+arcsinh(c*x))*sinh(a/b)/b/c^3-d*e*Chi(2*a/b+2*arcsinh( 
c*x))*sinh(2*a/b)/b/c^2-1/4*e^2*Shi(3*a/b+3*arcsinh(c*x))*sinh(3*a/b)/b/c^ 
3
 
3.1.20.2 Mathematica [A] (verified)

Time = 0.35 (sec) , antiderivative size = 188, normalized size of antiderivative = 0.77 \[ \int \frac {(d+e x)^2}{a+b \text {arcsinh}(c x)} \, dx=\frac {\left (4 c^2 d^2-e^2\right ) \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right )+e^2 \cosh \left (\frac {3 a}{b}\right ) \text {Chi}\left (3 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right )-4 c d e \text {Chi}\left (2 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right ) \sinh \left (\frac {2 a}{b}\right )-4 c^2 d^2 \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right )+e^2 \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right )+4 c d e \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (2 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right )-e^2 \sinh \left (\frac {3 a}{b}\right ) \text {Shi}\left (3 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right )}{4 b c^3} \]

input
Integrate[(d + e*x)^2/(a + b*ArcSinh[c*x]),x]
 
output
((4*c^2*d^2 - e^2)*Cosh[a/b]*CoshIntegral[a/b + ArcSinh[c*x]] + e^2*Cosh[( 
3*a)/b]*CoshIntegral[3*(a/b + ArcSinh[c*x])] - 4*c*d*e*CoshIntegral[2*(a/b 
 + ArcSinh[c*x])]*Sinh[(2*a)/b] - 4*c^2*d^2*Sinh[a/b]*SinhIntegral[a/b + A 
rcSinh[c*x]] + e^2*Sinh[a/b]*SinhIntegral[a/b + ArcSinh[c*x]] + 4*c*d*e*Co 
sh[(2*a)/b]*SinhIntegral[2*(a/b + ArcSinh[c*x])] - e^2*Sinh[(3*a)/b]*SinhI 
ntegral[3*(a/b + ArcSinh[c*x])])/(4*b*c^3)
 
3.1.20.3 Rubi [A] (verified)

Time = 0.93 (sec) , antiderivative size = 233, normalized size of antiderivative = 0.95, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6245, 7293, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d+e x)^2}{a+b \text {arcsinh}(c x)} \, dx\)

\(\Big \downarrow \) 6245

\(\displaystyle \frac {\int \frac {(c d+c e x)^2 \sqrt {c^2 x^2+1}}{a+b \text {arcsinh}(c x)}d\text {arcsinh}(c x)}{c^3}\)

\(\Big \downarrow \) 7293

\(\displaystyle \frac {\int \left (\frac {c^2 \sqrt {c^2 x^2+1} d^2}{a+b \text {arcsinh}(c x)}+\frac {c e \sinh (2 \text {arcsinh}(c x)) d}{a+b \text {arcsinh}(c x)}+\frac {c^2 e^2 x^2 \sqrt {c^2 x^2+1}}{a+b \text {arcsinh}(c x)}\right )d\text {arcsinh}(c x)}{c^3}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {c^2 d^2 \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right )}{b}-\frac {c^2 d^2 \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right )}{b}-\frac {c d e \sinh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 a}{b}+2 \text {arcsinh}(c x)\right )}{b}-\frac {e^2 \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right )}{4 b}+\frac {e^2 \cosh \left (\frac {3 a}{b}\right ) \text {Chi}\left (\frac {3 a}{b}+3 \text {arcsinh}(c x)\right )}{4 b}+\frac {c d e \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 a}{b}+2 \text {arcsinh}(c x)\right )}{b}+\frac {e^2 \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right )}{4 b}-\frac {e^2 \sinh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 a}{b}+3 \text {arcsinh}(c x)\right )}{4 b}}{c^3}\)

input
Int[(d + e*x)^2/(a + b*ArcSinh[c*x]),x]
 
output
((c^2*d^2*Cosh[a/b]*CoshIntegral[a/b + ArcSinh[c*x]])/b - (e^2*Cosh[a/b]*C 
oshIntegral[a/b + ArcSinh[c*x]])/(4*b) + (e^2*Cosh[(3*a)/b]*CoshIntegral[( 
3*a)/b + 3*ArcSinh[c*x]])/(4*b) - (c*d*e*CoshIntegral[(2*a)/b + 2*ArcSinh[ 
c*x]]*Sinh[(2*a)/b])/b - (c^2*d^2*Sinh[a/b]*SinhIntegral[a/b + ArcSinh[c*x 
]])/b + (e^2*Sinh[a/b]*SinhIntegral[a/b + ArcSinh[c*x]])/(4*b) + (c*d*e*Co 
sh[(2*a)/b]*SinhIntegral[(2*a)/b + 2*ArcSinh[c*x]])/b - (e^2*Sinh[(3*a)/b] 
*SinhIntegral[(3*a)/b + 3*ArcSinh[c*x]])/(4*b))/c^3
 

3.1.20.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6245
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x 
_Symbol] :> Simp[1/c^(m + 1)   Subst[Int[(a + b*x)^n*Cosh[x]*(c*d + e*Sinh[ 
x])^m, x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[m, 
0]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.1.20.4 Maple [A] (verified)

Time = 1.00 (sec) , antiderivative size = 254, normalized size of antiderivative = 1.04

method result size
derivativedivides \(\frac {-\frac {e^{2} {\mathrm e}^{\frac {3 a}{b}} \operatorname {Ei}_{1}\left (3 \,\operatorname {arcsinh}\left (c x \right )+\frac {3 a}{b}\right )}{8 c^{2} b}-\frac {e^{2} {\mathrm e}^{-\frac {3 a}{b}} \operatorname {Ei}_{1}\left (-3 \,\operatorname {arcsinh}\left (c x \right )-\frac {3 a}{b}\right )}{8 c^{2} b}-\frac {{\mathrm e}^{\frac {a}{b}} \operatorname {Ei}_{1}\left (\operatorname {arcsinh}\left (c x \right )+\frac {a}{b}\right ) d^{2}}{2 b}+\frac {{\mathrm e}^{\frac {a}{b}} \operatorname {Ei}_{1}\left (\operatorname {arcsinh}\left (c x \right )+\frac {a}{b}\right ) e^{2}}{8 c^{2} b}-\frac {{\mathrm e}^{-\frac {a}{b}} \operatorname {Ei}_{1}\left (-\operatorname {arcsinh}\left (c x \right )-\frac {a}{b}\right ) d^{2}}{2 b}+\frac {{\mathrm e}^{-\frac {a}{b}} \operatorname {Ei}_{1}\left (-\operatorname {arcsinh}\left (c x \right )-\frac {a}{b}\right ) e^{2}}{8 c^{2} b}+\frac {d e \,{\mathrm e}^{\frac {2 a}{b}} \operatorname {Ei}_{1}\left (2 \,\operatorname {arcsinh}\left (c x \right )+\frac {2 a}{b}\right )}{2 c b}-\frac {d e \,{\mathrm e}^{-\frac {2 a}{b}} \operatorname {Ei}_{1}\left (-2 \,\operatorname {arcsinh}\left (c x \right )-\frac {2 a}{b}\right )}{2 c b}}{c}\) \(254\)
default \(\frac {-\frac {e^{2} {\mathrm e}^{\frac {3 a}{b}} \operatorname {Ei}_{1}\left (3 \,\operatorname {arcsinh}\left (c x \right )+\frac {3 a}{b}\right )}{8 c^{2} b}-\frac {e^{2} {\mathrm e}^{-\frac {3 a}{b}} \operatorname {Ei}_{1}\left (-3 \,\operatorname {arcsinh}\left (c x \right )-\frac {3 a}{b}\right )}{8 c^{2} b}-\frac {{\mathrm e}^{\frac {a}{b}} \operatorname {Ei}_{1}\left (\operatorname {arcsinh}\left (c x \right )+\frac {a}{b}\right ) d^{2}}{2 b}+\frac {{\mathrm e}^{\frac {a}{b}} \operatorname {Ei}_{1}\left (\operatorname {arcsinh}\left (c x \right )+\frac {a}{b}\right ) e^{2}}{8 c^{2} b}-\frac {{\mathrm e}^{-\frac {a}{b}} \operatorname {Ei}_{1}\left (-\operatorname {arcsinh}\left (c x \right )-\frac {a}{b}\right ) d^{2}}{2 b}+\frac {{\mathrm e}^{-\frac {a}{b}} \operatorname {Ei}_{1}\left (-\operatorname {arcsinh}\left (c x \right )-\frac {a}{b}\right ) e^{2}}{8 c^{2} b}+\frac {d e \,{\mathrm e}^{\frac {2 a}{b}} \operatorname {Ei}_{1}\left (2 \,\operatorname {arcsinh}\left (c x \right )+\frac {2 a}{b}\right )}{2 c b}-\frac {d e \,{\mathrm e}^{-\frac {2 a}{b}} \operatorname {Ei}_{1}\left (-2 \,\operatorname {arcsinh}\left (c x \right )-\frac {2 a}{b}\right )}{2 c b}}{c}\) \(254\)

input
int((e*x+d)^2/(a+b*arcsinh(c*x)),x,method=_RETURNVERBOSE)
 
output
1/c*(-1/8/c^2*e^2/b*exp(3*a/b)*Ei(1,3*arcsinh(c*x)+3*a/b)-1/8/c^2*e^2/b*ex 
p(-3*a/b)*Ei(1,-3*arcsinh(c*x)-3*a/b)-1/2/b*exp(a/b)*Ei(1,arcsinh(c*x)+a/b 
)*d^2+1/8/c^2/b*exp(a/b)*Ei(1,arcsinh(c*x)+a/b)*e^2-1/2/b*exp(-a/b)*Ei(1,- 
arcsinh(c*x)-a/b)*d^2+1/8/c^2/b*exp(-a/b)*Ei(1,-arcsinh(c*x)-a/b)*e^2+1/2/ 
c*d*e/b*exp(2*a/b)*Ei(1,2*arcsinh(c*x)+2*a/b)-1/2/c*d*e/b*exp(-2*a/b)*Ei(1 
,-2*arcsinh(c*x)-2*a/b))
 
3.1.20.5 Fricas [F]

\[ \int \frac {(d+e x)^2}{a+b \text {arcsinh}(c x)} \, dx=\int { \frac {{\left (e x + d\right )}^{2}}{b \operatorname {arsinh}\left (c x\right ) + a} \,d x } \]

input
integrate((e*x+d)^2/(a+b*arcsinh(c*x)),x, algorithm="fricas")
 
output
integral((e^2*x^2 + 2*d*e*x + d^2)/(b*arcsinh(c*x) + a), x)
 
3.1.20.6 Sympy [F]

\[ \int \frac {(d+e x)^2}{a+b \text {arcsinh}(c x)} \, dx=\int \frac {\left (d + e x\right )^{2}}{a + b \operatorname {asinh}{\left (c x \right )}}\, dx \]

input
integrate((e*x+d)**2/(a+b*asinh(c*x)),x)
 
output
Integral((d + e*x)**2/(a + b*asinh(c*x)), x)
 
3.1.20.7 Maxima [F]

\[ \int \frac {(d+e x)^2}{a+b \text {arcsinh}(c x)} \, dx=\int { \frac {{\left (e x + d\right )}^{2}}{b \operatorname {arsinh}\left (c x\right ) + a} \,d x } \]

input
integrate((e*x+d)^2/(a+b*arcsinh(c*x)),x, algorithm="maxima")
 
output
integrate((e*x + d)^2/(b*arcsinh(c*x) + a), x)
 
3.1.20.8 Giac [F]

\[ \int \frac {(d+e x)^2}{a+b \text {arcsinh}(c x)} \, dx=\int { \frac {{\left (e x + d\right )}^{2}}{b \operatorname {arsinh}\left (c x\right ) + a} \,d x } \]

input
integrate((e*x+d)^2/(a+b*arcsinh(c*x)),x, algorithm="giac")
 
output
integrate((e*x + d)^2/(b*arcsinh(c*x) + a), x)
 
3.1.20.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(d+e x)^2}{a+b \text {arcsinh}(c x)} \, dx=\int \frac {{\left (d+e\,x\right )}^2}{a+b\,\mathrm {asinh}\left (c\,x\right )} \,d x \]

input
int((d + e*x)^2/(a + b*asinh(c*x)),x)
 
output
int((d + e*x)^2/(a + b*asinh(c*x)), x)