3.4.57 \(\int \frac {e^{\text {arcsinh}(a+b x)}}{x^5} \, dx\) [357]

3.4.57.1 Optimal result
3.4.57.2 Mathematica [A] (verified)
3.4.57.3 Rubi [A] (verified)
3.4.57.4 Maple [B] (verified)
3.4.57.5 Fricas [A] (verification not implemented)
3.4.57.6 Sympy [F]
3.4.57.7 Maxima [B] (verification not implemented)
3.4.57.8 Giac [B] (verification not implemented)
3.4.57.9 Mupad [F(-1)]

3.4.57.1 Optimal result

Integrand size = 12, antiderivative size = 207 \[ \int \frac {e^{\text {arcsinh}(a+b x)}}{x^5} \, dx=-\frac {a}{4 x^4}-\frac {b}{3 x^3}+\frac {\left (1-4 a^2\right ) b^2 \left (1+a^2+a b x\right ) \sqrt {1+a^2+2 a b x+b^2 x^2}}{8 \left (1+a^2\right )^3 x^2}-\frac {\left (1+a^2+2 a b x+b^2 x^2\right )^{3/2}}{4 \left (1+a^2\right ) x^4}+\frac {5 a b \left (1+a^2+2 a b x+b^2 x^2\right )^{3/2}}{12 \left (1+a^2\right )^2 x^3}+\frac {\left (1-4 a^2\right ) b^4 \text {arctanh}\left (\frac {1+a^2+a b x}{\sqrt {1+a^2} \sqrt {1+a^2+2 a b x+b^2 x^2}}\right )}{8 \left (1+a^2\right )^{7/2}} \]

output
-1/4*a/x^4-1/3*b/x^3-1/4*(b^2*x^2+2*a*b*x+a^2+1)^(3/2)/(a^2+1)/x^4+5/12*a* 
b*(b^2*x^2+2*a*b*x+a^2+1)^(3/2)/(a^2+1)^2/x^3+1/8*(-4*a^2+1)*b^4*arctanh(( 
a*b*x+a^2+1)/(a^2+1)^(1/2)/(b^2*x^2+2*a*b*x+a^2+1)^(1/2))/(a^2+1)^(7/2)+1/ 
8*(-4*a^2+1)*b^2*(a*b*x+a^2+1)*(b^2*x^2+2*a*b*x+a^2+1)^(1/2)/(a^2+1)^3/x^2
 
3.4.57.2 Mathematica [A] (verified)

Time = 0.59 (sec) , antiderivative size = 192, normalized size of antiderivative = 0.93 \[ \int \frac {e^{\text {arcsinh}(a+b x)}}{x^5} \, dx=\frac {1}{24} \left (-\frac {6 a}{x^4}-\frac {8 b}{x^3}-\frac {\sqrt {1+a^2+2 a b x+b^2 x^2} \left (6+\frac {2 a b x}{1+a^2}-\frac {\left (-3+2 a^2\right ) b^2 x^2}{\left (1+a^2\right )^2}+\frac {a \left (-13+2 a^2\right ) b^3 x^3}{\left (1+a^2\right )^3}\right )}{x^4}+\frac {3 (-1+2 a) (1+2 a) b^4 \log (x)}{\left (1+a^2\right )^{7/2}}-\frac {3 (-1+2 a) (1+2 a) b^4 \log \left (1+a^2+a b x+\sqrt {1+a^2} \sqrt {1+a^2+2 a b x+b^2 x^2}\right )}{\left (1+a^2\right )^{7/2}}\right ) \]

input
Integrate[E^ArcSinh[a + b*x]/x^5,x]
 
output
((-6*a)/x^4 - (8*b)/x^3 - (Sqrt[1 + a^2 + 2*a*b*x + b^2*x^2]*(6 + (2*a*b*x 
)/(1 + a^2) - ((-3 + 2*a^2)*b^2*x^2)/(1 + a^2)^2 + (a*(-13 + 2*a^2)*b^3*x^ 
3)/(1 + a^2)^3))/x^4 + (3*(-1 + 2*a)*(1 + 2*a)*b^4*Log[x])/(1 + a^2)^(7/2) 
 - (3*(-1 + 2*a)*(1 + 2*a)*b^4*Log[1 + a^2 + a*b*x + Sqrt[1 + a^2]*Sqrt[1 
+ a^2 + 2*a*b*x + b^2*x^2]])/(1 + a^2)^(7/2))/24
 
3.4.57.3 Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {6293, 2010, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{\text {arcsinh}(a+b x)}}{x^5} \, dx\)

\(\Big \downarrow \) 6293

\(\displaystyle \int \frac {\sqrt {(a+b x)^2+1}+a+b x}{x^5}dx\)

\(\Big \downarrow \) 2010

\(\displaystyle \int \left (\frac {\sqrt {a^2+2 a b x+b^2 x^2+1}}{x^5}+\frac {a}{x^5}+\frac {b}{x^4}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\left (1-4 a^2\right ) b^4 \text {arctanh}\left (\frac {a^2+a b x+1}{\sqrt {a^2+1} \sqrt {a^2+2 a b x+b^2 x^2+1}}\right )}{8 \left (a^2+1\right )^{7/2}}+\frac {\left (1-4 a^2\right ) b^2 \left (a^2+a b x+1\right ) \sqrt {a^2+2 a b x+b^2 x^2+1}}{8 \left (a^2+1\right )^3 x^2}-\frac {\left (a^2+2 a b x+b^2 x^2+1\right )^{3/2}}{4 \left (a^2+1\right ) x^4}+\frac {5 a b \left (a^2+2 a b x+b^2 x^2+1\right )^{3/2}}{12 \left (a^2+1\right )^2 x^3}-\frac {a}{4 x^4}-\frac {b}{3 x^3}\)

input
Int[E^ArcSinh[a + b*x]/x^5,x]
 
output
-1/4*a/x^4 - b/(3*x^3) + ((1 - 4*a^2)*b^2*(1 + a^2 + a*b*x)*Sqrt[1 + a^2 + 
 2*a*b*x + b^2*x^2])/(8*(1 + a^2)^3*x^2) - (1 + a^2 + 2*a*b*x + b^2*x^2)^( 
3/2)/(4*(1 + a^2)*x^4) + (5*a*b*(1 + a^2 + 2*a*b*x + b^2*x^2)^(3/2))/(12*( 
1 + a^2)^2*x^3) + ((1 - 4*a^2)*b^4*ArcTanh[(1 + a^2 + a*b*x)/(Sqrt[1 + a^2 
]*Sqrt[1 + a^2 + 2*a*b*x + b^2*x^2])])/(8*(1 + a^2)^(7/2))
 

3.4.57.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2010
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x] 
, x] /; FreeQ[{c, m}, x] && SumQ[u] &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) 
+ (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
 

rule 6293
Int[E^(ArcSinh[u_]*(n_.))*(x_)^(m_.), x_Symbol] :> Int[x^m*(u + Sqrt[1 + u^ 
2])^n, x] /; RationalQ[m] && IntegerQ[n] && PolyQ[u, x]
 
3.4.57.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1002\) vs. \(2(183)=366\).

Time = 0.91 (sec) , antiderivative size = 1003, normalized size of antiderivative = 4.85

method result size
default \(\text {Expression too large to display}\) \(1003\)

input
int((b*x+a+(1+(b*x+a)^2)^(1/2))/x^5,x,method=_RETURNVERBOSE)
 
output
-1/4*(b^2*x^2+2*a*b*x+a^2+1)^(3/2)/(a^2+1)/x^4-5/4*a*b/(a^2+1)*(-1/3*(b^2* 
x^2+2*a*b*x+a^2+1)^(3/2)/(a^2+1)/x^3-a*b/(a^2+1)*(-1/2/(a^2+1)/x^2*(b^2*x^ 
2+2*a*b*x+a^2+1)^(3/2)-1/2*a*b/(a^2+1)*(-1/(a^2+1)/x*(b^2*x^2+2*a*b*x+a^2+ 
1)^(3/2)+a*b/(a^2+1)*((b^2*x^2+2*a*b*x+a^2+1)^(1/2)+a*b*ln((b^2*x+a*b)/(b^ 
2)^(1/2)+(b^2*x^2+2*a*b*x+a^2+1)^(1/2))/(b^2)^(1/2)-(a^2+1)^(1/2)*ln((2*a^ 
2+2+2*a*b*x+2*(a^2+1)^(1/2)*(b^2*x^2+2*a*b*x+a^2+1)^(1/2))/x))+2*b^2/(a^2+ 
1)*(1/4*(2*b^2*x+2*a*b)/b^2*(b^2*x^2+2*a*b*x+a^2+1)^(1/2)+1/8*(4*b^2*(a^2+ 
1)-4*a^2*b^2)/b^2*ln((b^2*x+a*b)/(b^2)^(1/2)+(b^2*x^2+2*a*b*x+a^2+1)^(1/2) 
)/(b^2)^(1/2)))+1/2*b^2/(a^2+1)*((b^2*x^2+2*a*b*x+a^2+1)^(1/2)+a*b*ln((b^2 
*x+a*b)/(b^2)^(1/2)+(b^2*x^2+2*a*b*x+a^2+1)^(1/2))/(b^2)^(1/2)-(a^2+1)^(1/ 
2)*ln((2*a^2+2+2*a*b*x+2*(a^2+1)^(1/2)*(b^2*x^2+2*a*b*x+a^2+1)^(1/2))/x))) 
)-1/4*b^2/(a^2+1)*(-1/2/(a^2+1)/x^2*(b^2*x^2+2*a*b*x+a^2+1)^(3/2)-1/2*a*b/ 
(a^2+1)*(-1/(a^2+1)/x*(b^2*x^2+2*a*b*x+a^2+1)^(3/2)+a*b/(a^2+1)*((b^2*x^2+ 
2*a*b*x+a^2+1)^(1/2)+a*b*ln((b^2*x+a*b)/(b^2)^(1/2)+(b^2*x^2+2*a*b*x+a^2+1 
)^(1/2))/(b^2)^(1/2)-(a^2+1)^(1/2)*ln((2*a^2+2+2*a*b*x+2*(a^2+1)^(1/2)*(b^ 
2*x^2+2*a*b*x+a^2+1)^(1/2))/x))+2*b^2/(a^2+1)*(1/4*(2*b^2*x+2*a*b)/b^2*(b^ 
2*x^2+2*a*b*x+a^2+1)^(1/2)+1/8*(4*b^2*(a^2+1)-4*a^2*b^2)/b^2*ln((b^2*x+a*b 
)/(b^2)^(1/2)+(b^2*x^2+2*a*b*x+a^2+1)^(1/2))/(b^2)^(1/2)))+1/2*b^2/(a^2+1) 
*((b^2*x^2+2*a*b*x+a^2+1)^(1/2)+a*b*ln((b^2*x+a*b)/(b^2)^(1/2)+(b^2*x^2+2* 
a*b*x+a^2+1)^(1/2))/(b^2)^(1/2)-(a^2+1)^(1/2)*ln((2*a^2+2+2*a*b*x+2*(a^...
 
3.4.57.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 295, normalized size of antiderivative = 1.43 \[ \int \frac {e^{\text {arcsinh}(a+b x)}}{x^5} \, dx=\frac {3 \, {\left (4 \, a^{2} - 1\right )} \sqrt {a^{2} + 1} b^{4} x^{4} \log \left (-\frac {a^{2} b x + a^{3} + \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1} {\left (a^{2} - \sqrt {a^{2} + 1} a + 1\right )} - {\left (a b x + a^{2} + 1\right )} \sqrt {a^{2} + 1} + a}{x}\right ) - 6 \, a^{9} - {\left (2 \, a^{5} - 11 \, a^{3} - 13 \, a\right )} b^{4} x^{4} - 24 \, a^{7} - 36 \, a^{5} - 24 \, a^{3} - 8 \, {\left (a^{8} + 4 \, a^{6} + 6 \, a^{4} + 4 \, a^{2} + 1\right )} b x - {\left (6 \, a^{8} + {\left (2 \, a^{5} - 11 \, a^{3} - 13 \, a\right )} b^{3} x^{3} + 24 \, a^{6} - {\left (2 \, a^{6} + a^{4} - 4 \, a^{2} - 3\right )} b^{2} x^{2} + 36 \, a^{4} + 2 \, {\left (a^{7} + 3 \, a^{5} + 3 \, a^{3} + a\right )} b x + 24 \, a^{2} + 6\right )} \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1} - 6 \, a}{24 \, {\left (a^{8} + 4 \, a^{6} + 6 \, a^{4} + 4 \, a^{2} + 1\right )} x^{4}} \]

input
integrate((b*x+a+(1+(b*x+a)^2)^(1/2))/x^5,x, algorithm="fricas")
 
output
1/24*(3*(4*a^2 - 1)*sqrt(a^2 + 1)*b^4*x^4*log(-(a^2*b*x + a^3 + sqrt(b^2*x 
^2 + 2*a*b*x + a^2 + 1)*(a^2 - sqrt(a^2 + 1)*a + 1) - (a*b*x + a^2 + 1)*sq 
rt(a^2 + 1) + a)/x) - 6*a^9 - (2*a^5 - 11*a^3 - 13*a)*b^4*x^4 - 24*a^7 - 3 
6*a^5 - 24*a^3 - 8*(a^8 + 4*a^6 + 6*a^4 + 4*a^2 + 1)*b*x - (6*a^8 + (2*a^5 
 - 11*a^3 - 13*a)*b^3*x^3 + 24*a^6 - (2*a^6 + a^4 - 4*a^2 - 3)*b^2*x^2 + 3 
6*a^4 + 2*(a^7 + 3*a^5 + 3*a^3 + a)*b*x + 24*a^2 + 6)*sqrt(b^2*x^2 + 2*a*b 
*x + a^2 + 1) - 6*a)/((a^8 + 4*a^6 + 6*a^4 + 4*a^2 + 1)*x^4)
 
3.4.57.6 Sympy [F]

\[ \int \frac {e^{\text {arcsinh}(a+b x)}}{x^5} \, dx=\int \frac {a + b x + \sqrt {a^{2} + 2 a b x + b^{2} x^{2} + 1}}{x^{5}}\, dx \]

input
integrate((b*x+a+(1+(b*x+a)**2)**(1/2))/x**5,x)
 
output
Integral((a + b*x + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1))/x**5, x)
 
3.4.57.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 594 vs. \(2 (183) = 366\).

Time = 0.38 (sec) , antiderivative size = 594, normalized size of antiderivative = 2.87 \[ \int \frac {e^{\text {arcsinh}(a+b x)}}{x^5} \, dx=\frac {5 \, a^{4} b^{4} \operatorname {arsinh}\left (\frac {2 \, a b x}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}} {\left | x \right |}} + \frac {2 \, a^{2}}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}} {\left | x \right |}} + \frac {2}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}} {\left | x \right |}}\right )}{8 \, {\left (a^{2} + 1\right )}^{\frac {7}{2}}} - \frac {3 \, a^{2} b^{4} \operatorname {arsinh}\left (\frac {2 \, a b x}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}} {\left | x \right |}} + \frac {2 \, a^{2}}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}} {\left | x \right |}} + \frac {2}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}} {\left | x \right |}}\right )}{4 \, {\left (a^{2} + 1\right )}^{\frac {5}{2}}} + \frac {5 \, \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1} a^{2} b^{4}}{8 \, {\left (a^{2} + 1\right )}^{3}} + \frac {b^{4} \operatorname {arsinh}\left (\frac {2 \, a b x}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}} {\left | x \right |}} + \frac {2 \, a^{2}}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}} {\left | x \right |}} + \frac {2}{\sqrt {-4 \, a^{2} b^{2} + 4 \, {\left (a^{2} + 1\right )} b^{2}} {\left | x \right |}}\right )}{8 \, {\left (a^{2} + 1\right )}^{\frac {3}{2}}} - \frac {\sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1} b^{4}}{8 \, {\left (a^{2} + 1\right )}^{2}} + \frac {5 \, \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1} a^{3} b^{3}}{8 \, {\left (a^{2} + 1\right )}^{3} x} - \frac {\sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1} a b^{3}}{8 \, {\left (a^{2} + 1\right )}^{2} x} - \frac {5 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2} + 1\right )}^{\frac {3}{2}} a^{2} b^{2}}{8 \, {\left (a^{2} + 1\right )}^{3} x^{2}} + \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2} + 1\right )}^{\frac {3}{2}} b^{2}}{8 \, {\left (a^{2} + 1\right )}^{2} x^{2}} + \frac {5 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2} + 1\right )}^{\frac {3}{2}} a b}{12 \, {\left (a^{2} + 1\right )}^{2} x^{3}} - \frac {b}{3 \, x^{3}} - \frac {a}{4 \, x^{4}} - \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2} + 1\right )}^{\frac {3}{2}}}{4 \, {\left (a^{2} + 1\right )} x^{4}} \]

input
integrate((b*x+a+(1+(b*x+a)^2)^(1/2))/x^5,x, algorithm="maxima")
 
output
5/8*a^4*b^4*arcsinh(2*a*b*x/(sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2)*abs(x)) + 
2*a^2/(sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2)*abs(x)) + 2/(sqrt(-4*a^2*b^2 + 4 
*(a^2 + 1)*b^2)*abs(x)))/(a^2 + 1)^(7/2) - 3/4*a^2*b^4*arcsinh(2*a*b*x/(sq 
rt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2)*abs(x)) + 2*a^2/(sqrt(-4*a^2*b^2 + 4*(a^2 
 + 1)*b^2)*abs(x)) + 2/(sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2)*abs(x)))/(a^2 + 
 1)^(5/2) + 5/8*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)*a^2*b^4/(a^2 + 1)^3 + 1/ 
8*b^4*arcsinh(2*a*b*x/(sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2)*abs(x)) + 2*a^2/ 
(sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2)*abs(x)) + 2/(sqrt(-4*a^2*b^2 + 4*(a^2 
+ 1)*b^2)*abs(x)))/(a^2 + 1)^(3/2) - 1/8*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1) 
*b^4/(a^2 + 1)^2 + 5/8*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)*a^3*b^3/((a^2 + 1 
)^3*x) - 1/8*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)*a*b^3/((a^2 + 1)^2*x) - 5/8 
*(b^2*x^2 + 2*a*b*x + a^2 + 1)^(3/2)*a^2*b^2/((a^2 + 1)^3*x^2) + 1/8*(b^2* 
x^2 + 2*a*b*x + a^2 + 1)^(3/2)*b^2/((a^2 + 1)^2*x^2) + 5/12*(b^2*x^2 + 2*a 
*b*x + a^2 + 1)^(3/2)*a*b/((a^2 + 1)^2*x^3) - 1/3*b/x^3 - 1/4*a/x^4 - 1/4* 
(b^2*x^2 + 2*a*b*x + a^2 + 1)^(3/2)/((a^2 + 1)*x^4)
 
3.4.57.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1173 vs. \(2 (183) = 366\).

Time = 0.35 (sec) , antiderivative size = 1173, normalized size of antiderivative = 5.67 \[ \int \frac {e^{\text {arcsinh}(a+b x)}}{x^5} \, dx=\text {Too large to display} \]

input
integrate((b*x+a+(1+(b*x+a)^2)^(1/2))/x^5,x, algorithm="giac")
 
output
1/8*(4*a^2*b^4 - b^4)*log(abs(-2*x*abs(b) + 2*sqrt(b^2*x^2 + 2*a*b*x + a^2 
 + 1) - 2*sqrt(a^2 + 1))/abs(-2*x*abs(b) + 2*sqrt(b^2*x^2 + 2*a*b*x + a^2 
+ 1) + 2*sqrt(a^2 + 1)))/((a^6 + 3*a^4 + 3*a^2 + 1)*sqrt(a^2 + 1)) - 1/12* 
(4*b*x + 3*a)/x^4 + 1/12*(32*(x*abs(b) - sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1) 
)^5*a^6*b^4 + 256*(x*abs(b) - sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1))^3*a^8*b^4 
 + 96*(x*abs(b) - sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1))*a^10*b^4 + 144*(x*abs 
(b) - sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1))^4*a^7*b^3*abs(b) + 224*(x*abs(b) 
- sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1))^2*a^9*b^3*abs(b) + 16*a^11*b^3*abs(b) 
 - 12*(x*abs(b) - sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1))^7*a^2*b^4 + 140*(x*ab 
s(b) - sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1))^5*a^4*b^4 + 716*(x*abs(b) - sqrt 
(b^2*x^2 + 2*a*b*x + a^2 + 1))^3*a^6*b^4 + 372*(x*abs(b) - sqrt(b^2*x^2 + 
2*a*b*x + a^2 + 1))*a^8*b^4 + 432*(x*abs(b) - sqrt(b^2*x^2 + 2*a*b*x + a^2 
 + 1))^4*a^5*b^3*abs(b) + 704*(x*abs(b) - sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1 
))^2*a^7*b^3*abs(b) + 80*a^9*b^3*abs(b) + 3*(x*abs(b) - sqrt(b^2*x^2 + 2*a 
*b*x + a^2 + 1))^7*b^4 + 129*(x*abs(b) - sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1) 
)^5*a^2*b^4 + 685*(x*abs(b) - sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1))^3*a^4*b^4 
 + 543*(x*abs(b) - sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1))*a^6*b^4 + 432*(x*abs 
(b) - sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1))^4*a^3*b^3*abs(b) + 768*(x*abs(b) 
- sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1))^2*a^5*b^3*abs(b) + 160*a^7*b^3*abs(b) 
 + 21*(x*abs(b) - sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1))^5*b^4 + 246*(x*abs...
 
3.4.57.9 Mupad [F(-1)]

Timed out. \[ \int \frac {e^{\text {arcsinh}(a+b x)}}{x^5} \, dx=\int \frac {a+\sqrt {{\left (a+b\,x\right )}^2+1}+b\,x}{x^5} \,d x \]

input
int((a + ((a + b*x)^2 + 1)^(1/2) + b*x)/x^5,x)
 
output
int((a + ((a + b*x)^2 + 1)^(1/2) + b*x)/x^5, x)