3.2.98 \(\int (c e+d e x)^{7/2} (a+b \text {arccosh}(c+d x)) \, dx\) [198]

3.2.98.1 Optimal result
3.2.98.2 Mathematica [C] (verified)
3.2.98.3 Rubi [A] (verified)
3.2.98.4 Maple [C] (verified)
3.2.98.5 Fricas [C] (verification not implemented)
3.2.98.6 Sympy [F(-1)]
3.2.98.7 Maxima [F(-2)]
3.2.98.8 Giac [F]
3.2.98.9 Mupad [F(-1)]

3.2.98.1 Optimal result

Integrand size = 23, antiderivative size = 189 \[ \int (c e+d e x)^{7/2} (a+b \text {arccosh}(c+d x)) \, dx=-\frac {28 b e^2 \sqrt {-1+c+d x} (e (c+d x))^{3/2} \sqrt {1+c+d x}}{405 d}-\frac {4 b \sqrt {-1+c+d x} (e (c+d x))^{7/2} \sqrt {1+c+d x}}{81 d}+\frac {2 (e (c+d x))^{9/2} (a+b \text {arccosh}(c+d x))}{9 d e}-\frac {28 b e^3 \sqrt {1-c-d x} \sqrt {e (c+d x)} E\left (\left .\arcsin \left (\frac {\sqrt {1+c+d x}}{\sqrt {2}}\right )\right |2\right )}{135 d \sqrt {-c-d x} \sqrt {-1+c+d x}} \]

output
2/9*(e*(d*x+c))^(9/2)*(a+b*arccosh(d*x+c))/d/e-28/135*b*e^3*EllipticE(1/2* 
(d*x+c+1)^(1/2)*2^(1/2),2^(1/2))*(-d*x-c+1)^(1/2)*(e*(d*x+c))^(1/2)/d/(-d* 
x-c)^(1/2)/(d*x+c-1)^(1/2)-28/405*b*e^2*(e*(d*x+c))^(3/2)*(d*x+c-1)^(1/2)* 
(d*x+c+1)^(1/2)/d-4/81*b*(e*(d*x+c))^(7/2)*(d*x+c-1)^(1/2)*(d*x+c+1)^(1/2) 
/d
 
3.2.98.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.23 (sec) , antiderivative size = 150, normalized size of antiderivative = 0.79 \[ \int (c e+d e x)^{7/2} (a+b \text {arccosh}(c+d x)) \, dx=\frac {2 (e (c+d x))^{7/2} \left ((c+d x)^{9/2} (a+b \text {arccosh}(c+d x))+\frac {2 b (c+d x)^{3/2} \left (7 \left (1-(c+d x)^2\right )+5 (c+d x)^2 \left (1-(c+d x)^2\right )-7 \sqrt {1-(c+d x)^2} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},(c+d x)^2\right )\right )}{45 \sqrt {-1+c+d x} \sqrt {1+c+d x}}\right )}{9 d (c+d x)^{7/2}} \]

input
Integrate[(c*e + d*e*x)^(7/2)*(a + b*ArcCosh[c + d*x]),x]
 
output
(2*(e*(c + d*x))^(7/2)*((c + d*x)^(9/2)*(a + b*ArcCosh[c + d*x]) + (2*b*(c 
 + d*x)^(3/2)*(7*(1 - (c + d*x)^2) + 5*(c + d*x)^2*(1 - (c + d*x)^2) - 7*S 
qrt[1 - (c + d*x)^2]*Hypergeometric2F1[1/2, 3/4, 7/4, (c + d*x)^2]))/(45*S 
qrt[-1 + c + d*x]*Sqrt[1 + c + d*x])))/(9*d*(c + d*x)^(7/2))
 
3.2.98.3 Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.03, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {6411, 6298, 113, 27, 113, 27, 124, 27, 123}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (c e+d e x)^{7/2} (a+b \text {arccosh}(c+d x)) \, dx\)

\(\Big \downarrow \) 6411

\(\displaystyle \frac {\int (e (c+d x))^{7/2} (a+b \text {arccosh}(c+d x))d(c+d x)}{d}\)

\(\Big \downarrow \) 6298

\(\displaystyle \frac {\frac {2 (e (c+d x))^{9/2} (a+b \text {arccosh}(c+d x))}{9 e}-\frac {2 b \int \frac {(e (c+d x))^{9/2}}{\sqrt {c+d x-1} \sqrt {c+d x+1}}d(c+d x)}{9 e}}{d}\)

\(\Big \downarrow \) 113

\(\displaystyle \frac {\frac {2 (e (c+d x))^{9/2} (a+b \text {arccosh}(c+d x))}{9 e}-\frac {2 b \left (\frac {2}{9} \int \frac {7 e^2 (e (c+d x))^{5/2}}{2 \sqrt {c+d x-1} \sqrt {c+d x+1}}d(c+d x)+\frac {2}{9} e \sqrt {c+d x-1} \sqrt {c+d x+1} (e (c+d x))^{7/2}\right )}{9 e}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {2 (e (c+d x))^{9/2} (a+b \text {arccosh}(c+d x))}{9 e}-\frac {2 b \left (\frac {7}{9} e^2 \int \frac {(e (c+d x))^{5/2}}{\sqrt {c+d x-1} \sqrt {c+d x+1}}d(c+d x)+\frac {2}{9} e \sqrt {c+d x-1} \sqrt {c+d x+1} (e (c+d x))^{7/2}\right )}{9 e}}{d}\)

\(\Big \downarrow \) 113

\(\displaystyle \frac {\frac {2 (e (c+d x))^{9/2} (a+b \text {arccosh}(c+d x))}{9 e}-\frac {2 b \left (\frac {7}{9} e^2 \left (\frac {2}{5} \int \frac {3 e^2 \sqrt {e (c+d x)}}{2 \sqrt {c+d x-1} \sqrt {c+d x+1}}d(c+d x)+\frac {2}{5} e \sqrt {c+d x-1} \sqrt {c+d x+1} (e (c+d x))^{3/2}\right )+\frac {2}{9} e \sqrt {c+d x-1} \sqrt {c+d x+1} (e (c+d x))^{7/2}\right )}{9 e}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {2 (e (c+d x))^{9/2} (a+b \text {arccosh}(c+d x))}{9 e}-\frac {2 b \left (\frac {7}{9} e^2 \left (\frac {3}{5} e^2 \int \frac {\sqrt {e (c+d x)}}{\sqrt {c+d x-1} \sqrt {c+d x+1}}d(c+d x)+\frac {2}{5} e \sqrt {c+d x-1} \sqrt {c+d x+1} (e (c+d x))^{3/2}\right )+\frac {2}{9} e \sqrt {c+d x-1} \sqrt {c+d x+1} (e (c+d x))^{7/2}\right )}{9 e}}{d}\)

\(\Big \downarrow \) 124

\(\displaystyle \frac {\frac {2 (e (c+d x))^{9/2} (a+b \text {arccosh}(c+d x))}{9 e}-\frac {2 b \left (\frac {7}{9} e^2 \left (\frac {3 e^2 \sqrt {-c-d x+1} \sqrt {e (c+d x)} \int \frac {\sqrt {2} \sqrt {-c-d x}}{\sqrt {-c-d x+1} \sqrt {c+d x+1}}d(c+d x)}{5 \sqrt {2} \sqrt {-c-d x} \sqrt {c+d x-1}}+\frac {2}{5} e \sqrt {c+d x-1} \sqrt {c+d x+1} (e (c+d x))^{3/2}\right )+\frac {2}{9} e \sqrt {c+d x-1} \sqrt {c+d x+1} (e (c+d x))^{7/2}\right )}{9 e}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {2 (e (c+d x))^{9/2} (a+b \text {arccosh}(c+d x))}{9 e}-\frac {2 b \left (\frac {7}{9} e^2 \left (\frac {3 e^2 \sqrt {-c-d x+1} \sqrt {e (c+d x)} \int \frac {\sqrt {-c-d x}}{\sqrt {-c-d x+1} \sqrt {c+d x+1}}d(c+d x)}{5 \sqrt {-c-d x} \sqrt {c+d x-1}}+\frac {2}{5} e \sqrt {c+d x-1} \sqrt {c+d x+1} (e (c+d x))^{3/2}\right )+\frac {2}{9} e \sqrt {c+d x-1} \sqrt {c+d x+1} (e (c+d x))^{7/2}\right )}{9 e}}{d}\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {\frac {2 (e (c+d x))^{9/2} (a+b \text {arccosh}(c+d x))}{9 e}-\frac {2 b \left (\frac {7}{9} e^2 \left (\frac {6 e^2 \sqrt {-c-d x+1} \sqrt {e (c+d x)} E\left (\left .\arcsin \left (\frac {\sqrt {c+d x+1}}{\sqrt {2}}\right )\right |2\right )}{5 \sqrt {-c-d x} \sqrt {c+d x-1}}+\frac {2}{5} e \sqrt {c+d x-1} \sqrt {c+d x+1} (e (c+d x))^{3/2}\right )+\frac {2}{9} e \sqrt {c+d x-1} \sqrt {c+d x+1} (e (c+d x))^{7/2}\right )}{9 e}}{d}\)

input
Int[(c*e + d*e*x)^(7/2)*(a + b*ArcCosh[c + d*x]),x]
 
output
((2*(e*(c + d*x))^(9/2)*(a + b*ArcCosh[c + d*x]))/(9*e) - (2*b*((2*e*Sqrt[ 
-1 + c + d*x]*(e*(c + d*x))^(7/2)*Sqrt[1 + c + d*x])/9 + (7*e^2*((2*e*Sqrt 
[-1 + c + d*x]*(e*(c + d*x))^(3/2)*Sqrt[1 + c + d*x])/5 + (6*e^2*Sqrt[1 - 
c - d*x]*Sqrt[e*(c + d*x)]*EllipticE[ArcSin[Sqrt[1 + c + d*x]/Sqrt[2]], 2] 
)/(5*Sqrt[-c - d*x]*Sqrt[-1 + c + d*x])))/9))/(9*e))/d
 

3.2.98.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 113
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/(d*f*(m + n + p + 1))), x] + Simp[1/(d*f*(m + n + p + 1))   Int[(a + b*x) 
^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m 
 - 1) + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m 
 + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] & 
& GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 124
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[Sqrt[e + f*x]*(Sqrt[b*((c + d*x)/(b*c - a*d))]/(Sqrt[c + d 
*x]*Sqrt[b*((e + f*x)/(b*e - a*f))]))   Int[Sqrt[b*(e/(b*e - a*f)) + b*f*(x 
/(b*e - a*f))]/(Sqrt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))] 
), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !(GtQ[b/(b*c - a*d), 0] && Gt 
Q[b/(b*e - a*f), 0]) &&  !LtQ[-(b*c - a*d)/d, 0]
 

rule 6298
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] 
 :> Simp[(d*x)^(m + 1)*((a + b*ArcCosh[c*x])^n/(d*(m + 1))), x] - Simp[b*c* 
(n/(d*(m + 1)))   Int[(d*x)^(m + 1)*((a + b*ArcCosh[c*x])^(n - 1)/(Sqrt[1 + 
 c*x]*Sqrt[-1 + c*x])), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] & 
& NeQ[m, -1]
 

rule 6411
Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^( 
m_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b* 
ArcCosh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
3.2.98.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 7.44 (sec) , antiderivative size = 276, normalized size of antiderivative = 1.46

method result size
derivativedivides \(\frac {\frac {2 a \left (d e x +c e \right )^{\frac {9}{2}}}{9}+2 b \left (\frac {\left (d e x +c e \right )^{\frac {9}{2}} \operatorname {arccosh}\left (\frac {d e x +c e}{e}\right )}{9}-\frac {2 \left (5 \sqrt {-\frac {1}{e}}\, \left (d e x +c e \right )^{\frac {11}{2}}+2 \sqrt {-\frac {1}{e}}\, e^{2} \left (d e x +c e \right )^{\frac {7}{2}}+21 e^{5} \sqrt {\frac {d e x +c e +e}{e}}\, \sqrt {\frac {-d e x -c e +e}{e}}\, \operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {-\frac {1}{e}}, i\right )-21 e^{5} \sqrt {\frac {d e x +c e +e}{e}}\, \sqrt {\frac {-d e x -c e +e}{e}}\, \operatorname {EllipticE}\left (\sqrt {d e x +c e}\, \sqrt {-\frac {1}{e}}, i\right )-7 \sqrt {-\frac {1}{e}}\, e^{4} \left (d e x +c e \right )^{\frac {3}{2}}\right )}{405 e \sqrt {-\frac {1}{e}}\, \sqrt {\frac {d e x +c e +e}{e}}\, \sqrt {-\frac {-d e x -c e +e}{e}}}\right )}{d e}\) \(276\)
default \(\frac {\frac {2 a \left (d e x +c e \right )^{\frac {9}{2}}}{9}+2 b \left (\frac {\left (d e x +c e \right )^{\frac {9}{2}} \operatorname {arccosh}\left (\frac {d e x +c e}{e}\right )}{9}-\frac {2 \left (5 \sqrt {-\frac {1}{e}}\, \left (d e x +c e \right )^{\frac {11}{2}}+2 \sqrt {-\frac {1}{e}}\, e^{2} \left (d e x +c e \right )^{\frac {7}{2}}+21 e^{5} \sqrt {\frac {d e x +c e +e}{e}}\, \sqrt {\frac {-d e x -c e +e}{e}}\, \operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {-\frac {1}{e}}, i\right )-21 e^{5} \sqrt {\frac {d e x +c e +e}{e}}\, \sqrt {\frac {-d e x -c e +e}{e}}\, \operatorname {EllipticE}\left (\sqrt {d e x +c e}\, \sqrt {-\frac {1}{e}}, i\right )-7 \sqrt {-\frac {1}{e}}\, e^{4} \left (d e x +c e \right )^{\frac {3}{2}}\right )}{405 e \sqrt {-\frac {1}{e}}\, \sqrt {\frac {d e x +c e +e}{e}}\, \sqrt {-\frac {-d e x -c e +e}{e}}}\right )}{d e}\) \(276\)
parts \(\frac {2 a \left (d e x +c e \right )^{\frac {9}{2}}}{9 d e}+\frac {2 b \left (\frac {\left (d e x +c e \right )^{\frac {9}{2}} \operatorname {arccosh}\left (\frac {d e x +c e}{e}\right )}{9}-\frac {2 \left (5 \sqrt {-\frac {1}{e}}\, \left (d e x +c e \right )^{\frac {11}{2}}+2 \sqrt {-\frac {1}{e}}\, e^{2} \left (d e x +c e \right )^{\frac {7}{2}}+21 e^{5} \sqrt {\frac {d e x +c e +e}{e}}\, \sqrt {-\frac {d e x +c e -e}{e}}\, \operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {-\frac {1}{e}}, i\right )-21 e^{5} \sqrt {\frac {d e x +c e +e}{e}}\, \sqrt {-\frac {d e x +c e -e}{e}}\, \operatorname {EllipticE}\left (\sqrt {d e x +c e}\, \sqrt {-\frac {1}{e}}, i\right )-7 \sqrt {-\frac {1}{e}}\, e^{4} \left (d e x +c e \right )^{\frac {3}{2}}\right )}{405 e \sqrt {-\frac {1}{e}}\, \sqrt {\frac {d e x +c e +e}{e}}\, \sqrt {\frac {d e x +c e -e}{e}}}\right )}{d e}\) \(282\)

input
int((d*e*x+c*e)^(7/2)*(a+b*arccosh(d*x+c)),x,method=_RETURNVERBOSE)
 
output
2/d/e*(1/9*a*(d*e*x+c*e)^(9/2)+b*(1/9*(d*e*x+c*e)^(9/2)*arccosh(1/e*(d*e*x 
+c*e))-2/405/e*(5*(-1/e)^(1/2)*(d*e*x+c*e)^(11/2)+2*(-1/e)^(1/2)*e^2*(d*e* 
x+c*e)^(7/2)+21*e^5*((d*e*x+c*e+e)/e)^(1/2)*((-d*e*x-c*e+e)/e)^(1/2)*Ellip 
ticF((d*e*x+c*e)^(1/2)*(-1/e)^(1/2),I)-21*e^5*((d*e*x+c*e+e)/e)^(1/2)*((-d 
*e*x-c*e+e)/e)^(1/2)*EllipticE((d*e*x+c*e)^(1/2)*(-1/e)^(1/2),I)-7*(-1/e)^ 
(1/2)*e^4*(d*e*x+c*e)^(3/2))/(-1/e)^(1/2)/((d*e*x+c*e+e)/e)^(1/2)/(-(-d*e* 
x-c*e+e)/e)^(1/2)))
 
3.2.98.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 306, normalized size of antiderivative = 1.62 \[ \int (c e+d e x)^{7/2} (a+b \text {arccosh}(c+d x)) \, dx=\frac {2 \, {\left (42 \, \sqrt {d^{3} e} b e^{3} {\rm weierstrassZeta}\left (\frac {4}{d^{2}}, 0, {\rm weierstrassPInverse}\left (\frac {4}{d^{2}}, 0, \frac {d x + c}{d}\right )\right ) + 45 \, {\left (b d^{5} e^{3} x^{4} + 4 \, b c d^{4} e^{3} x^{3} + 6 \, b c^{2} d^{3} e^{3} x^{2} + 4 \, b c^{3} d^{2} e^{3} x + b c^{4} d e^{3}\right )} \sqrt {d e x + c e} \log \left (d x + c + \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1}\right ) - 2 \, {\left (5 \, b d^{4} e^{3} x^{3} + 15 \, b c d^{3} e^{3} x^{2} + {\left (15 \, b c^{2} + 7 \, b\right )} d^{2} e^{3} x + {\left (5 \, b c^{3} + 7 \, b c\right )} d e^{3}\right )} \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1} \sqrt {d e x + c e} + 45 \, {\left (a d^{5} e^{3} x^{4} + 4 \, a c d^{4} e^{3} x^{3} + 6 \, a c^{2} d^{3} e^{3} x^{2} + 4 \, a c^{3} d^{2} e^{3} x + a c^{4} d e^{3}\right )} \sqrt {d e x + c e}\right )}}{405 \, d^{2}} \]

input
integrate((d*e*x+c*e)^(7/2)*(a+b*arccosh(d*x+c)),x, algorithm="fricas")
 
output
2/405*(42*sqrt(d^3*e)*b*e^3*weierstrassZeta(4/d^2, 0, weierstrassPInverse( 
4/d^2, 0, (d*x + c)/d)) + 45*(b*d^5*e^3*x^4 + 4*b*c*d^4*e^3*x^3 + 6*b*c^2* 
d^3*e^3*x^2 + 4*b*c^3*d^2*e^3*x + b*c^4*d*e^3)*sqrt(d*e*x + c*e)*log(d*x + 
 c + sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1)) - 2*(5*b*d^4*e^3*x^3 + 15*b*c*d^3* 
e^3*x^2 + (15*b*c^2 + 7*b)*d^2*e^3*x + (5*b*c^3 + 7*b*c)*d*e^3)*sqrt(d^2*x 
^2 + 2*c*d*x + c^2 - 1)*sqrt(d*e*x + c*e) + 45*(a*d^5*e^3*x^4 + 4*a*c*d^4* 
e^3*x^3 + 6*a*c^2*d^3*e^3*x^2 + 4*a*c^3*d^2*e^3*x + a*c^4*d*e^3)*sqrt(d*e* 
x + c*e))/d^2
 
3.2.98.6 Sympy [F(-1)]

Timed out. \[ \int (c e+d e x)^{7/2} (a+b \text {arccosh}(c+d x)) \, dx=\text {Timed out} \]

input
integrate((d*e*x+c*e)**(7/2)*(a+b*acosh(d*x+c)),x)
 
output
Timed out
 
3.2.98.7 Maxima [F(-2)]

Exception generated. \[ \int (c e+d e x)^{7/2} (a+b \text {arccosh}(c+d x)) \, dx=\text {Exception raised: ValueError} \]

input
integrate((d*e*x+c*e)^(7/2)*(a+b*arccosh(d*x+c)),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.2.98.8 Giac [F]

\[ \int (c e+d e x)^{7/2} (a+b \text {arccosh}(c+d x)) \, dx=\int { {\left (d e x + c e\right )}^{\frac {7}{2}} {\left (b \operatorname {arcosh}\left (d x + c\right ) + a\right )} \,d x } \]

input
integrate((d*e*x+c*e)^(7/2)*(a+b*arccosh(d*x+c)),x, algorithm="giac")
 
output
integrate((d*e*x + c*e)^(7/2)*(b*arccosh(d*x + c) + a), x)
 
3.2.98.9 Mupad [F(-1)]

Timed out. \[ \int (c e+d e x)^{7/2} (a+b \text {arccosh}(c+d x)) \, dx=\int {\left (c\,e+d\,e\,x\right )}^{7/2}\,\left (a+b\,\mathrm {acosh}\left (c+d\,x\right )\right ) \,d x \]

input
int((c*e + d*e*x)^(7/2)*(a + b*acosh(c + d*x)),x)
 
output
int((c*e + d*e*x)^(7/2)*(a + b*acosh(c + d*x)), x)