3.11.6 \(\int e^{\text {arctanh}(a x)} x^2 (1-a^2 x^2)^p \, dx\) [1006]

3.11.6.1 Optimal result
3.11.6.2 Mathematica [A] (verified)
3.11.6.3 Rubi [A] (verified)
3.11.6.4 Maple [A] (verified)
3.11.6.5 Fricas [F]
3.11.6.6 Sympy [C] (verification not implemented)
3.11.6.7 Maxima [F]
3.11.6.8 Giac [F]
3.11.6.9 Mupad [F(-1)]

3.11.6.1 Optimal result

Integrand size = 22, antiderivative size = 84 \[ \int e^{\text {arctanh}(a x)} x^2 \left (1-a^2 x^2\right )^p \, dx=-\frac {\left (1-a^2 x^2\right )^{\frac {1}{2}+p}}{a^3 (1+2 p)}+\frac {\left (1-a^2 x^2\right )^{\frac {3}{2}+p}}{a^3 (3+2 p)}+\frac {1}{3} x^3 \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {1}{2}-p,\frac {5}{2},a^2 x^2\right ) \]

output
-(-a^2*x^2+1)^(1/2+p)/a^3/(1+2*p)+(-a^2*x^2+1)^(3/2+p)/a^3/(3+2*p)+1/3*x^3 
*hypergeom([3/2, 1/2-p],[5/2],a^2*x^2)
 
3.11.6.2 Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.90 \[ \int e^{\text {arctanh}(a x)} x^2 \left (1-a^2 x^2\right )^p \, dx=-\frac {\left (1-a^2 x^2\right )^{\frac {1}{2}+p} \left (2+a^2 (1+2 p) x^2\right )}{a^3 \left (3+8 p+4 p^2\right )}+\frac {1}{3} x^3 \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {1}{2}-p,\frac {5}{2},a^2 x^2\right ) \]

input
Integrate[E^ArcTanh[a*x]*x^2*(1 - a^2*x^2)^p,x]
 
output
-(((1 - a^2*x^2)^(1/2 + p)*(2 + a^2*(1 + 2*p)*x^2))/(a^3*(3 + 8*p + 4*p^2) 
)) + (x^3*Hypergeometric2F1[3/2, 1/2 - p, 5/2, a^2*x^2])/3
 
3.11.6.3 Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.08, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {6698, 542, 243, 53, 278, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^2 e^{\text {arctanh}(a x)} \left (1-a^2 x^2\right )^p \, dx\)

\(\Big \downarrow \) 6698

\(\displaystyle \int x^2 (a x+1) \left (1-a^2 x^2\right )^{p-\frac {1}{2}}dx\)

\(\Big \downarrow \) 542

\(\displaystyle \int x^2 \left (1-a^2 x^2\right )^{p-\frac {1}{2}}dx+a \int x^3 \left (1-a^2 x^2\right )^{p-\frac {1}{2}}dx\)

\(\Big \downarrow \) 243

\(\displaystyle \int x^2 \left (1-a^2 x^2\right )^{p-\frac {1}{2}}dx+\frac {1}{2} a \int x^2 \left (1-a^2 x^2\right )^{p-\frac {1}{2}}dx^2\)

\(\Big \downarrow \) 53

\(\displaystyle \int x^2 \left (1-a^2 x^2\right )^{p-\frac {1}{2}}dx+\frac {1}{2} a \int \left (\frac {\left (1-a^2 x^2\right )^{p-\frac {1}{2}}}{a^2}-\frac {\left (1-a^2 x^2\right )^{p+\frac {1}{2}}}{a^2}\right )dx^2\)

\(\Big \downarrow \) 278

\(\displaystyle \frac {1}{2} a \int \left (\frac {\left (1-a^2 x^2\right )^{p-\frac {1}{2}}}{a^2}-\frac {\left (1-a^2 x^2\right )^{p+\frac {1}{2}}}{a^2}\right )dx^2+\frac {1}{3} x^3 \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {1}{2}-p,\frac {5}{2},a^2 x^2\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{3} x^3 \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {1}{2}-p,\frac {5}{2},a^2 x^2\right )+\frac {1}{2} a \left (\frac {2 \left (1-a^2 x^2\right )^{p+\frac {3}{2}}}{a^4 (2 p+3)}-\frac {2 \left (1-a^2 x^2\right )^{p+\frac {1}{2}}}{a^4 (2 p+1)}\right )\)

input
Int[E^ArcTanh[a*x]*x^2*(1 - a^2*x^2)^p,x]
 
output
(a*((-2*(1 - a^2*x^2)^(1/2 + p))/(a^4*(1 + 2*p)) + (2*(1 - a^2*x^2)^(3/2 + 
 p))/(a^4*(3 + 2*p))))/2 + (x^3*Hypergeometric2F1[3/2, 1/2 - p, 5/2, a^2*x 
^2])/3
 

3.11.6.3.1 Defintions of rubi rules used

rule 53
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int 
[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, 
x] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0] && LeQ[7*m + 4*n + 4, 0]) 
|| LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 278
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*(( 
c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/2, (m + 1)/2 + 1, ( 
-b)*(x^2/a)], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && (ILtQ[p, 0 
] || GtQ[a, 0])
 

rule 542
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> 
 Simp[c   Int[x^m*(a + b*x^2)^p, x], x] + Simp[d   Int[x^(m + 1)*(a + b*x^2 
)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && IntegerQ[m] &&  !IntegerQ[2*p]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6698
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x 
_Symbol] :> Simp[c^p   Int[x^m*(1 - a^2*x^2)^(p - n/2)*(1 + a*x)^n, x], x] 
/; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 
 0]) && IGtQ[(n + 1)/2, 0] &&  !IntegerQ[p - n/2]
 
3.11.6.4 Maple [A] (verified)

Time = 0.19 (sec) , antiderivative size = 47, normalized size of antiderivative = 0.56

method result size
meijerg \(\frac {a \,x^{4} \operatorname {hypergeom}\left (\left [2, \frac {1}{2}-p \right ], \left [3\right ], a^{2} x^{2}\right )}{4}+\frac {x^{3} \operatorname {hypergeom}\left (\left [\frac {3}{2}, \frac {1}{2}-p \right ], \left [\frac {5}{2}\right ], a^{2} x^{2}\right )}{3}\) \(47\)

input
int((a*x+1)/(-a^2*x^2+1)^(1/2)*x^2*(-a^2*x^2+1)^p,x,method=_RETURNVERBOSE)
 
output
1/4*a*x^4*hypergeom([2,1/2-p],[3],a^2*x^2)+1/3*x^3*hypergeom([3/2,1/2-p],[ 
5/2],a^2*x^2)
 
3.11.6.5 Fricas [F]

\[ \int e^{\text {arctanh}(a x)} x^2 \left (1-a^2 x^2\right )^p \, dx=\int { \frac {{\left (a x + 1\right )} {\left (-a^{2} x^{2} + 1\right )}^{p} x^{2}}{\sqrt {-a^{2} x^{2} + 1}} \,d x } \]

input
integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^2*(-a^2*x^2+1)^p,x, algorithm="fric 
as")
 
output
integral(-sqrt(-a^2*x^2 + 1)*(-a^2*x^2 + 1)^p*x^2/(a*x - 1), x)
 
3.11.6.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 7.49 (sec) , antiderivative size = 257, normalized size of antiderivative = 3.06 \[ \int e^{\text {arctanh}(a x)} x^2 \left (1-a^2 x^2\right )^p \, dx=- \frac {a^{2 p} x^{2 p + 3} e^{i \pi p} \Gamma \left (- p - \frac {3}{2}\right ) \Gamma \left (p + \frac {1}{2}\right ) {{}_{3}F_{2}\left (\begin {matrix} 1, - p, - p - \frac {3}{2} \\ \frac {1}{2}, - p - \frac {1}{2} \end {matrix}\middle | {\frac {1}{a^{2} x^{2}}} \right )}}{2 \sqrt {\pi } \Gamma \left (- p - \frac {1}{2}\right ) \Gamma \left (p + 1\right )} - \frac {a^{2 p + 3} x^{2 p + 3} e^{i \pi p} \Gamma \left (- p - \frac {3}{2}\right ) \Gamma \left (p + \frac {1}{2}\right ) {{}_{3}F_{2}\left (\begin {matrix} \frac {1}{2}, 1, p + \frac {3}{2} \\ p + 1, p + \frac {5}{2} \end {matrix}\middle | {a^{2} x^{2} e^{2 i \pi }} \right )}}{2 \sqrt {\pi } a^{3} \Gamma \left (- p - \frac {1}{2}\right ) \Gamma \left (p + 1\right )} - \frac {{G_{3, 3}^{2, 2}\left (\begin {matrix} - p - 1, 1 & -1 \\- p - \frac {3}{2}, - p - 1 & 0 \end {matrix} \middle | {\frac {e^{- i \pi }}{a^{2} x^{2}}} \right )} \Gamma \left (p + \frac {1}{2}\right )}{2 \pi a^{3}} - \frac {{G_{3, 3}^{1, 3}\left (\begin {matrix} -1, - p - 2, 1 & \\- p - 2 & - p - \frac {3}{2}, 0 \end {matrix} \middle | {\frac {e^{- i \pi }}{a^{2} x^{2}}} \right )} \Gamma \left (p + \frac {1}{2}\right )}{2 a^{3} \Gamma \left (- p\right ) \Gamma \left (p + 1\right )} \]

input
integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*x**2*(-a**2*x**2+1)**p,x)
 
output
-a**(2*p)*x**(2*p + 3)*exp(I*pi*p)*gamma(-p - 3/2)*gamma(p + 1/2)*hyper((1 
, -p, -p - 3/2), (1/2, -p - 1/2), 1/(a**2*x**2))/(2*sqrt(pi)*gamma(-p - 1/ 
2)*gamma(p + 1)) - a**(2*p + 3)*x**(2*p + 3)*exp(I*pi*p)*gamma(-p - 3/2)*g 
amma(p + 1/2)*hyper((1/2, 1, p + 3/2), (p + 1, p + 5/2), a**2*x**2*exp_pol 
ar(2*I*pi))/(2*sqrt(pi)*a**3*gamma(-p - 1/2)*gamma(p + 1)) - meijerg(((-p 
- 1, 1), (-1,)), ((-p - 3/2, -p - 1), (0,)), exp_polar(-I*pi)/(a**2*x**2)) 
*gamma(p + 1/2)/(2*pi*a**3) - meijerg(((-1, -p - 2, 1), ()), ((-p - 2,), ( 
-p - 3/2, 0)), exp_polar(-I*pi)/(a**2*x**2))*gamma(p + 1/2)/(2*a**3*gamma( 
-p)*gamma(p + 1))
 
3.11.6.7 Maxima [F]

\[ \int e^{\text {arctanh}(a x)} x^2 \left (1-a^2 x^2\right )^p \, dx=\int { \frac {{\left (a x + 1\right )} {\left (-a^{2} x^{2} + 1\right )}^{p} x^{2}}{\sqrt {-a^{2} x^{2} + 1}} \,d x } \]

input
integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^2*(-a^2*x^2+1)^p,x, algorithm="maxi 
ma")
 
output
integrate((a*x + 1)*(-a^2*x^2 + 1)^(p - 1/2)*x^2, x)
 
3.11.6.8 Giac [F]

\[ \int e^{\text {arctanh}(a x)} x^2 \left (1-a^2 x^2\right )^p \, dx=\int { \frac {{\left (a x + 1\right )} {\left (-a^{2} x^{2} + 1\right )}^{p} x^{2}}{\sqrt {-a^{2} x^{2} + 1}} \,d x } \]

input
integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^2*(-a^2*x^2+1)^p,x, algorithm="giac 
")
 
output
integrate((a*x + 1)*(-a^2*x^2 + 1)^p*x^2/sqrt(-a^2*x^2 + 1), x)
 
3.11.6.9 Mupad [F(-1)]

Timed out. \[ \int e^{\text {arctanh}(a x)} x^2 \left (1-a^2 x^2\right )^p \, dx=\int \frac {x^2\,{\left (1-a^2\,x^2\right )}^p\,\left (a\,x+1\right )}{\sqrt {1-a^2\,x^2}} \,d x \]

input
int((x^2*(1 - a^2*x^2)^p*(a*x + 1))/(1 - a^2*x^2)^(1/2),x)
 
output
int((x^2*(1 - a^2*x^2)^p*(a*x + 1))/(1 - a^2*x^2)^(1/2), x)