3.13.27 \(\int \frac {e^{-\text {arctanh}(a x)} (c-a^2 c x^2)^p}{x^2} \, dx\) [1227]

3.13.27.1 Optimal result
3.13.27.2 Mathematica [A] (verified)
3.13.27.3 Rubi [A] (verified)
3.13.27.4 Maple [F]
3.13.27.5 Fricas [F]
3.13.27.6 Sympy [F]
3.13.27.7 Maxima [F]
3.13.27.8 Giac [F(-2)]
3.13.27.9 Mupad [F(-1)]

3.13.27.1 Optimal result

Integrand size = 25, antiderivative size = 112 \[ \int \frac {e^{-\text {arctanh}(a x)} \left (c-a^2 c x^2\right )^p}{x^2} \, dx=-\frac {\left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},\frac {1}{2}-p,\frac {1}{2},a^2 x^2\right )}{x}+\frac {a \sqrt {1-a^2 x^2} \left (c-a^2 c x^2\right )^p \operatorname {Hypergeometric2F1}\left (1,\frac {1}{2}+p,\frac {3}{2}+p,1-a^2 x^2\right )}{1+2 p} \]

output
-(-a^2*c*x^2+c)^p*hypergeom([-1/2, 1/2-p],[1/2],a^2*x^2)/x/((-a^2*x^2+1)^p 
)+a*(-a^2*c*x^2+c)^p*hypergeom([1, 1/2+p],[3/2+p],-a^2*x^2+1)*(-a^2*x^2+1) 
^(1/2)/(1+2*p)
 
3.13.27.2 Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.91 \[ \int \frac {e^{-\text {arctanh}(a x)} \left (c-a^2 c x^2\right )^p}{x^2} \, dx=\left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \left (-\frac {\operatorname {Hypergeometric2F1}\left (-\frac {1}{2},\frac {1}{2}-p,\frac {1}{2},a^2 x^2\right )}{x}+\frac {a \left (1-a^2 x^2\right )^{\frac {1}{2}+p} \operatorname {Hypergeometric2F1}\left (1,\frac {1}{2}+p,\frac {3}{2}+p,1-a^2 x^2\right )}{1+2 p}\right ) \]

input
Integrate[(c - a^2*c*x^2)^p/(E^ArcTanh[a*x]*x^2),x]
 
output
((c - a^2*c*x^2)^p*(-(Hypergeometric2F1[-1/2, 1/2 - p, 1/2, a^2*x^2]/x) + 
(a*(1 - a^2*x^2)^(1/2 + p)*Hypergeometric2F1[1, 1/2 + p, 3/2 + p, 1 - a^2* 
x^2])/(1 + 2*p)))/(1 - a^2*x^2)^p
 
3.13.27.3 Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.91, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {6703, 6699, 542, 243, 75, 278}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{-\text {arctanh}(a x)} \left (c-a^2 c x^2\right )^p}{x^2} \, dx\)

\(\Big \downarrow \) 6703

\(\displaystyle \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \int \frac {e^{-\text {arctanh}(a x)} \left (1-a^2 x^2\right )^p}{x^2}dx\)

\(\Big \downarrow \) 6699

\(\displaystyle \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \int \frac {(1-a x) \left (1-a^2 x^2\right )^{p-\frac {1}{2}}}{x^2}dx\)

\(\Big \downarrow \) 542

\(\displaystyle \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \left (\int \frac {\left (1-a^2 x^2\right )^{p-\frac {1}{2}}}{x^2}dx-a \int \frac {\left (1-a^2 x^2\right )^{p-\frac {1}{2}}}{x}dx\right )\)

\(\Big \downarrow \) 243

\(\displaystyle \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \left (\int \frac {\left (1-a^2 x^2\right )^{p-\frac {1}{2}}}{x^2}dx-\frac {1}{2} a \int \frac {\left (1-a^2 x^2\right )^{p-\frac {1}{2}}}{x^2}dx^2\right )\)

\(\Big \downarrow \) 75

\(\displaystyle \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \left (\int \frac {\left (1-a^2 x^2\right )^{p-\frac {1}{2}}}{x^2}dx+\frac {a \left (1-a^2 x^2\right )^{p+\frac {1}{2}} \operatorname {Hypergeometric2F1}\left (1,p+\frac {1}{2},p+\frac {3}{2},1-a^2 x^2\right )}{2 p+1}\right )\)

\(\Big \downarrow \) 278

\(\displaystyle \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \left (\frac {a \left (1-a^2 x^2\right )^{p+\frac {1}{2}} \operatorname {Hypergeometric2F1}\left (1,p+\frac {1}{2},p+\frac {3}{2},1-a^2 x^2\right )}{2 p+1}-\frac {\operatorname {Hypergeometric2F1}\left (-\frac {1}{2},\frac {1}{2}-p,\frac {1}{2},a^2 x^2\right )}{x}\right )\)

input
Int[(c - a^2*c*x^2)^p/(E^ArcTanh[a*x]*x^2),x]
 
output
((c - a^2*c*x^2)^p*(-(Hypergeometric2F1[-1/2, 1/2 - p, 1/2, a^2*x^2]/x) + 
(a*(1 - a^2*x^2)^(1/2 + p)*Hypergeometric2F1[1, 1/2 + p, 3/2 + p, 1 - a^2* 
x^2])/(1 + 2*p)))/(1 - a^2*x^2)^p
 

3.13.27.3.1 Defintions of rubi rules used

rule 75
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x 
)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))*Hypergeometric2F1[-m, n + 1, n + 2, 1 + 
 d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (IntegerQ[m] 
 || GtQ[-d/(b*c), 0])
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 278
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*(( 
c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/2, (m + 1)/2 + 1, ( 
-b)*(x^2/a)], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && (ILtQ[p, 0 
] || GtQ[a, 0])
 

rule 542
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> 
 Simp[c   Int[x^m*(a + b*x^2)^p, x], x] + Simp[d   Int[x^(m + 1)*(a + b*x^2 
)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && IntegerQ[m] &&  !IntegerQ[2*p]
 

rule 6699
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_ 
Symbol] :> Simp[c^p   Int[x^m*((1 - a^2*x^2)^(p + n/2)/(1 - a*x)^n), x], x] 
 /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c 
, 0]) && ILtQ[(n - 1)/2, 0] &&  !IntegerQ[p - n/2]
 

rule 6703
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_ 
Symbol] :> Simp[c^IntPart[p]*((c + d*x^2)^FracPart[p]/(1 - a^2*x^2)^FracPar 
t[p])   Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, 
d, m, n, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) &&  !I 
ntegerQ[n/2]
 
3.13.27.4 Maple [F]

\[\int \frac {\left (-a^{2} c \,x^{2}+c \right )^{p} \sqrt {-a^{2} x^{2}+1}}{\left (a x +1\right ) x^{2}}d x\]

input
int((-a^2*c*x^2+c)^p/(a*x+1)*(-a^2*x^2+1)^(1/2)/x^2,x)
 
output
int((-a^2*c*x^2+c)^p/(a*x+1)*(-a^2*x^2+1)^(1/2)/x^2,x)
 
3.13.27.5 Fricas [F]

\[ \int \frac {e^{-\text {arctanh}(a x)} \left (c-a^2 c x^2\right )^p}{x^2} \, dx=\int { \frac {\sqrt {-a^{2} x^{2} + 1} {\left (-a^{2} c x^{2} + c\right )}^{p}}{{\left (a x + 1\right )} x^{2}} \,d x } \]

input
integrate((-a^2*c*x^2+c)^p/(a*x+1)*(-a^2*x^2+1)^(1/2)/x^2,x, algorithm="fr 
icas")
 
output
integral(sqrt(-a^2*x^2 + 1)*(-a^2*c*x^2 + c)^p/(a*x^3 + x^2), x)
 
3.13.27.6 Sympy [F]

\[ \int \frac {e^{-\text {arctanh}(a x)} \left (c-a^2 c x^2\right )^p}{x^2} \, dx=\int \frac {\sqrt {- \left (a x - 1\right ) \left (a x + 1\right )} \left (- c \left (a x - 1\right ) \left (a x + 1\right )\right )^{p}}{x^{2} \left (a x + 1\right )}\, dx \]

input
integrate((-a**2*c*x**2+c)**p/(a*x+1)*(-a**2*x**2+1)**(1/2)/x**2,x)
 
output
Integral(sqrt(-(a*x - 1)*(a*x + 1))*(-c*(a*x - 1)*(a*x + 1))**p/(x**2*(a*x 
 + 1)), x)
 
3.13.27.7 Maxima [F]

\[ \int \frac {e^{-\text {arctanh}(a x)} \left (c-a^2 c x^2\right )^p}{x^2} \, dx=\int { \frac {\sqrt {-a^{2} x^{2} + 1} {\left (-a^{2} c x^{2} + c\right )}^{p}}{{\left (a x + 1\right )} x^{2}} \,d x } \]

input
integrate((-a^2*c*x^2+c)^p/(a*x+1)*(-a^2*x^2+1)^(1/2)/x^2,x, algorithm="ma 
xima")
 
output
integrate(sqrt(-a^2*x^2 + 1)*(-a^2*c*x^2 + c)^p/((a*x + 1)*x^2), x)
 
3.13.27.8 Giac [F(-2)]

Exception generated. \[ \int \frac {e^{-\text {arctanh}(a x)} \left (c-a^2 c x^2\right )^p}{x^2} \, dx=\text {Exception raised: TypeError} \]

input
integrate((-a^2*c*x^2+c)^p/(a*x+1)*(-a^2*x^2+1)^(1/2)/x^2,x, algorithm="gi 
ac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.13.27.9 Mupad [F(-1)]

Timed out. \[ \int \frac {e^{-\text {arctanh}(a x)} \left (c-a^2 c x^2\right )^p}{x^2} \, dx=\int \frac {{\left (c-a^2\,c\,x^2\right )}^p\,\sqrt {1-a^2\,x^2}}{x^2\,\left (a\,x+1\right )} \,d x \]

input
int(((c - a^2*c*x^2)^p*(1 - a^2*x^2)^(1/2))/(x^2*(a*x + 1)),x)
 
output
int(((c - a^2*c*x^2)^p*(1 - a^2*x^2)^(1/2))/(x^2*(a*x + 1)), x)