3.2.42 \(\int e^{3 \text {arctanh}(a x)} x^m \, dx\) [142]

3.2.42.1 Optimal result
3.2.42.2 Mathematica [C] (warning: unable to verify)
3.2.42.3 Rubi [A] (verified)
3.2.42.4 Maple [A] (verified)
3.2.42.5 Fricas [F]
3.2.42.6 Sympy [F]
3.2.42.7 Maxima [F]
3.2.42.8 Giac [F(-2)]
3.2.42.9 Mupad [F(-1)]

3.2.42.1 Optimal result

Integrand size = 12, antiderivative size = 151 \[ \int e^{3 \text {arctanh}(a x)} x^m \, dx=-\frac {3 x^{1+m} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1+m}{2},\frac {3+m}{2},a^2 x^2\right )}{1+m}-\frac {a x^{2+m} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2+m}{2},\frac {4+m}{2},a^2 x^2\right )}{2+m}+\frac {4 x^{1+m} \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {1+m}{2},\frac {3+m}{2},a^2 x^2\right )}{1+m}+\frac {4 a x^{2+m} \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {2+m}{2},\frac {4+m}{2},a^2 x^2\right )}{2+m} \]

output
-3*x^(1+m)*hypergeom([1/2, 1/2+1/2*m],[3/2+1/2*m],a^2*x^2)/(1+m)-a*x^(2+m) 
*hypergeom([1/2, 1+1/2*m],[2+1/2*m],a^2*x^2)/(2+m)+4*x^(1+m)*hypergeom([3/ 
2, 1/2+1/2*m],[3/2+1/2*m],a^2*x^2)/(1+m)+4*a*x^(2+m)*hypergeom([3/2, 1+1/2 
*m],[2+1/2*m],a^2*x^2)/(2+m)
 
3.2.42.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 5 in optimal.

Time = 0.06 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.61 \[ \int e^{3 \text {arctanh}(a x)} x^m \, dx=\frac {x^{1+m} \sqrt {-1-a x} \sqrt {1-a x} \left (\operatorname {AppellF1}\left (1+m,-\frac {1}{2},\frac {1}{2},2+m,-a x,a x\right )-2 \operatorname {AppellF1}\left (1+m,-\frac {1}{2},\frac {3}{2},2+m,-a x,a x\right )\right )}{(1+m) \sqrt {-1+a x} \sqrt {1+a x}} \]

input
Integrate[E^(3*ArcTanh[a*x])*x^m,x]
 
output
(x^(1 + m)*Sqrt[-1 - a*x]*Sqrt[1 - a*x]*(AppellF1[1 + m, -1/2, 1/2, 2 + m, 
 -(a*x), a*x] - 2*AppellF1[1 + m, -1/2, 3/2, 2 + m, -(a*x), a*x]))/((1 + m 
)*Sqrt[-1 + a*x]*Sqrt[1 + a*x])
 
3.2.42.3 Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.01, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.583, Rules used = {6674, 2355, 557, 278, 583, 557, 278}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^m e^{3 \text {arctanh}(a x)} \, dx\)

\(\Big \downarrow \) 6674

\(\displaystyle \int \frac {(a x+1)^2 x^m}{(1-a x) \sqrt {1-a^2 x^2}}dx\)

\(\Big \downarrow \) 2355

\(\displaystyle \int \frac {x^m (-a x-3)}{\sqrt {1-a^2 x^2}}dx+4 \int \frac {x^m}{(1-a x) \sqrt {1-a^2 x^2}}dx\)

\(\Big \downarrow \) 557

\(\displaystyle -a \int \frac {x^{m+1}}{\sqrt {1-a^2 x^2}}dx-3 \int \frac {x^m}{\sqrt {1-a^2 x^2}}dx+4 \int \frac {x^m}{(1-a x) \sqrt {1-a^2 x^2}}dx\)

\(\Big \downarrow \) 278

\(\displaystyle 4 \int \frac {x^m}{(1-a x) \sqrt {1-a^2 x^2}}dx-\frac {3 x^{m+1} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m+1}{2},\frac {m+3}{2},a^2 x^2\right )}{m+1}-\frac {a x^{m+2} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m+2}{2},\frac {m+4}{2},a^2 x^2\right )}{m+2}\)

\(\Big \downarrow \) 583

\(\displaystyle 4 \int \frac {x^m (a x+1)}{\left (1-a^2 x^2\right )^{3/2}}dx-\frac {3 x^{m+1} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m+1}{2},\frac {m+3}{2},a^2 x^2\right )}{m+1}-\frac {a x^{m+2} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m+2}{2},\frac {m+4}{2},a^2 x^2\right )}{m+2}\)

\(\Big \downarrow \) 557

\(\displaystyle 4 \left (a \int \frac {x^{m+1}}{\left (1-a^2 x^2\right )^{3/2}}dx+\int \frac {x^m}{\left (1-a^2 x^2\right )^{3/2}}dx\right )-\frac {3 x^{m+1} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m+1}{2},\frac {m+3}{2},a^2 x^2\right )}{m+1}-\frac {a x^{m+2} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m+2}{2},\frac {m+4}{2},a^2 x^2\right )}{m+2}\)

\(\Big \downarrow \) 278

\(\displaystyle -\frac {3 x^{m+1} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m+1}{2},\frac {m+3}{2},a^2 x^2\right )}{m+1}-\frac {a x^{m+2} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m+2}{2},\frac {m+4}{2},a^2 x^2\right )}{m+2}+4 \left (\frac {x^{m+1} \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {m+1}{2},\frac {m+3}{2},a^2 x^2\right )}{m+1}+\frac {a x^{m+2} \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {m+2}{2},\frac {m+4}{2},a^2 x^2\right )}{m+2}\right )\)

input
Int[E^(3*ArcTanh[a*x])*x^m,x]
 
output
(-3*x^(1 + m)*Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, a^2*x^2])/(1 + 
m) - (a*x^(2 + m)*Hypergeometric2F1[1/2, (2 + m)/2, (4 + m)/2, a^2*x^2])/( 
2 + m) + 4*((x^(1 + m)*Hypergeometric2F1[3/2, (1 + m)/2, (3 + m)/2, a^2*x^ 
2])/(1 + m) + (a*x^(2 + m)*Hypergeometric2F1[3/2, (2 + m)/2, (4 + m)/2, a^ 
2*x^2])/(2 + m))
 

3.2.42.3.1 Defintions of rubi rules used

rule 278
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*(( 
c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/2, (m + 1)/2 + 1, ( 
-b)*(x^2/a)], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && (ILtQ[p, 0 
] || GtQ[a, 0])
 

rule 557
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Sym 
bol] :> Simp[c   Int[(e*x)^m*(a + b*x^2)^p, x], x] + Simp[d/e   Int[(e*x)^( 
m + 1)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x]
 

rule 583
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), 
x_Symbol] :> Simp[c^(2*n)/a^n   Int[(e*x)^m*((a + b*x^2)^(n + p)/(c - d*x)^ 
n), x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[b*c^2 + a*d^2, 0] && I 
LtQ[n, 0]
 

rule 2355
Int[(Px_)*((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2) 
^(p_.), x_Symbol] :> Int[PolynomialQuotient[Px, c + d*x, x]*(e*x)^m*(c + d* 
x)^(n + 1)*(a + b*x^2)^p, x] + Simp[PolynomialRemainder[Px, c + d*x, x]   I 
nt[(e*x)^m*(c + d*x)^n*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p} 
, x] && PolynomialQ[Px, x] && LtQ[n, 0]
 

rule 6674
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_.)*(x_))^(m_.), x_Symbol] :> Int[(c*x 
)^m*((1 + a*x)^((n + 1)/2)/((1 - a*x)^((n - 1)/2)*Sqrt[1 - a^2*x^2])), x] / 
; FreeQ[{a, c, m}, x] && IntegerQ[(n - 1)/2]
 
3.2.42.4 Maple [A] (verified)

Time = 0.07 (sec) , antiderivative size = 139, normalized size of antiderivative = 0.92

method result size
meijerg \(\frac {x^{1+m} \operatorname {hypergeom}\left (\left [\frac {3}{2}, \frac {1}{2}+\frac {m}{2}\right ], \left [\frac {3}{2}+\frac {m}{2}\right ], a^{2} x^{2}\right )}{1+m}+\frac {a^{3} x^{4+m} \operatorname {hypergeom}\left (\left [\frac {3}{2}, 2+\frac {m}{2}\right ], \left [3+\frac {m}{2}\right ], a^{2} x^{2}\right )}{4+m}+\frac {3 a^{2} x^{3+m} \operatorname {hypergeom}\left (\left [\frac {3}{2}, \frac {3}{2}+\frac {m}{2}\right ], \left [\frac {5}{2}+\frac {m}{2}\right ], a^{2} x^{2}\right )}{3+m}+\frac {3 a \,x^{2+m} \operatorname {hypergeom}\left (\left [\frac {3}{2}, 1+\frac {m}{2}\right ], \left [2+\frac {m}{2}\right ], a^{2} x^{2}\right )}{2+m}\) \(139\)

input
int((a*x+1)^3/(-a^2*x^2+1)^(3/2)*x^m,x,method=_RETURNVERBOSE)
 
output
x^(1+m)*hypergeom([3/2,1/2+1/2*m],[3/2+1/2*m],a^2*x^2)/(1+m)+a^3/(4+m)*x^( 
4+m)*hypergeom([3/2,2+1/2*m],[3+1/2*m],a^2*x^2)+3*a^2/(3+m)*x^(3+m)*hyperg 
eom([3/2,3/2+1/2*m],[5/2+1/2*m],a^2*x^2)+3*a*x^(2+m)*hypergeom([3/2,1+1/2* 
m],[2+1/2*m],a^2*x^2)/(2+m)
 
3.2.42.5 Fricas [F]

\[ \int e^{3 \text {arctanh}(a x)} x^m \, dx=\int { \frac {{\left (a x + 1\right )}^{3} x^{m}}{{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*x^m,x, algorithm="fricas")
 
output
integral(sqrt(-a^2*x^2 + 1)*(a*x + 1)*x^m/(a^2*x^2 - 2*a*x + 1), x)
 
3.2.42.6 Sympy [F]

\[ \int e^{3 \text {arctanh}(a x)} x^m \, dx=\int \frac {x^{m} \left (a x + 1\right )^{3}}{\left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}}}\, dx \]

input
integrate((a*x+1)**3/(-a**2*x**2+1)**(3/2)*x**m,x)
 
output
Integral(x**m*(a*x + 1)**3/(-(a*x - 1)*(a*x + 1))**(3/2), x)
 
3.2.42.7 Maxima [F]

\[ \int e^{3 \text {arctanh}(a x)} x^m \, dx=\int { \frac {{\left (a x + 1\right )}^{3} x^{m}}{{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*x^m,x, algorithm="maxima")
 
output
integrate((a*x + 1)^3*x^m/(-a^2*x^2 + 1)^(3/2), x)
 
3.2.42.8 Giac [F(-2)]

Exception generated. \[ \int e^{3 \text {arctanh}(a x)} x^m \, dx=\text {Exception raised: TypeError} \]

input
integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*x^m,x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.2.42.9 Mupad [F(-1)]

Timed out. \[ \int e^{3 \text {arctanh}(a x)} x^m \, dx=\int \frac {x^m\,{\left (a\,x+1\right )}^3}{{\left (1-a^2\,x^2\right )}^{3/2}} \,d x \]

input
int((x^m*(a*x + 1)^3)/(1 - a^2*x^2)^(3/2),x)
 
output
int((x^m*(a*x + 1)^3)/(1 - a^2*x^2)^(3/2), x)