3.7.3 \(\int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx\) [603]

3.7.3.1 Optimal result
3.7.3.2 Mathematica [A] (verified)
3.7.3.3 Rubi [A] (verified)
3.7.3.4 Maple [B] (verified)
3.7.3.5 Fricas [A] (verification not implemented)
3.7.3.6 Sympy [B] (verification not implemented)
3.7.3.7 Maxima [F]
3.7.3.8 Giac [F(-2)]
3.7.3.9 Mupad [F(-1)]

3.7.3.1 Optimal result

Integrand size = 27, antiderivative size = 86 \[ \int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=-2 \sqrt {c-\frac {c}{a x}}-2 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {c}}\right )+4 \sqrt {2} \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {2} \sqrt {c}}\right ) \]

output
-2*arctanh((c-c/a/x)^(1/2)/c^(1/2))*c^(1/2)+4*arctanh(1/2*(c-c/a/x)^(1/2)* 
2^(1/2)/c^(1/2))*2^(1/2)*c^(1/2)-2*(c-c/a/x)^(1/2)
 
3.7.3.2 Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.00 \[ \int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=-2 \sqrt {c-\frac {c}{a x}}-2 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {c}}\right )+4 \sqrt {2} \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {2} \sqrt {c}}\right ) \]

input
Integrate[Sqrt[c - c/(a*x)]/(E^(2*ArcTanh[a*x])*x),x]
 
output
-2*Sqrt[c - c/(a*x)] - 2*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x)]/Sqrt[c]] + 4*Sq 
rt[2]*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x)]/(Sqrt[2]*Sqrt[c])]
 
3.7.3.3 Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.20, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6683, 1070, 281, 948, 95, 27, 174, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx\)

\(\Big \downarrow \) 6683

\(\displaystyle \int \frac {(1-a x) \sqrt {c-\frac {c}{a x}}}{x (a x+1)}dx\)

\(\Big \downarrow \) 1070

\(\displaystyle \int \frac {\left (\frac {1}{x}-a\right ) \sqrt {c-\frac {c}{a x}}}{x \left (a+\frac {1}{x}\right )}dx\)

\(\Big \downarrow \) 281

\(\displaystyle -\frac {a \int \frac {\left (c-\frac {c}{a x}\right )^{3/2}}{\left (a+\frac {1}{x}\right ) x}dx}{c}\)

\(\Big \downarrow \) 948

\(\displaystyle \frac {a \int \frac {\left (c-\frac {c}{a x}\right )^{3/2} x}{a+\frac {1}{x}}d\frac {1}{x}}{c}\)

\(\Big \downarrow \) 95

\(\displaystyle \frac {a \left (\int \frac {c^2 \left (a-\frac {3}{x}\right ) x}{a \left (a+\frac {1}{x}\right ) \sqrt {c-\frac {c}{a x}}}d\frac {1}{x}-\frac {2 c \sqrt {c-\frac {c}{a x}}}{a}\right )}{c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a \left (\frac {c^2 \int \frac {\left (a-\frac {3}{x}\right ) x}{\left (a+\frac {1}{x}\right ) \sqrt {c-\frac {c}{a x}}}d\frac {1}{x}}{a}-\frac {2 c \sqrt {c-\frac {c}{a x}}}{a}\right )}{c}\)

\(\Big \downarrow \) 174

\(\displaystyle \frac {a \left (\frac {c^2 \left (\int \frac {x}{\sqrt {c-\frac {c}{a x}}}d\frac {1}{x}-4 \int \frac {1}{\left (a+\frac {1}{x}\right ) \sqrt {c-\frac {c}{a x}}}d\frac {1}{x}\right )}{a}-\frac {2 c \sqrt {c-\frac {c}{a x}}}{a}\right )}{c}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {a \left (\frac {c^2 \left (\frac {8 a \int \frac {1}{2 a-\frac {a}{c x^2}}d\sqrt {c-\frac {c}{a x}}}{c}-\frac {2 a \int \frac {1}{a-\frac {a}{c x^2}}d\sqrt {c-\frac {c}{a x}}}{c}\right )}{a}-\frac {2 c \sqrt {c-\frac {c}{a x}}}{a}\right )}{c}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {a \left (\frac {c^2 \left (\frac {4 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {2} \sqrt {c}}\right )}{\sqrt {c}}-\frac {2 \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {c}}\right )}{\sqrt {c}}\right )}{a}-\frac {2 c \sqrt {c-\frac {c}{a x}}}{a}\right )}{c}\)

input
Int[Sqrt[c - c/(a*x)]/(E^(2*ArcTanh[a*x])*x),x]
 
output
(a*((-2*c*Sqrt[c - c/(a*x)])/a + (c^2*((-2*ArcTanh[Sqrt[c - c/(a*x)]/Sqrt[ 
c]])/Sqrt[c] + (4*Sqrt[2]*ArcTanh[Sqrt[c - c/(a*x)]/(Sqrt[2]*Sqrt[c])])/Sq 
rt[c]))/a))/c
 

3.7.3.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 95
Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), 
x_] :> Simp[f*((e + f*x)^(p - 1)/(b*d*(p - 1))), x] + Simp[1/(b*d)   Int[(b 
*d*e^2 - a*c*f^2 + f*(2*b*d*e - b*c*f - a*d*f)*x)*((e + f*x)^(p - 2)/((a + 
b*x)*(c + d*x))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 1]
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 281
Int[(u_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_ 
Symbol] :> Simp[(b/d)^p   Int[u*(c + d*x^n)^(p + q), x], x] /; FreeQ[{a, b, 
 c, d, n, p, q}, x] && EqQ[b*c - a*d, 0] && IntegerQ[p] &&  !(IntegerQ[q] & 
& SimplerQ[a + b*x^n, c + d*x^n])
 

rule 948
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_. 
), x_Symbol] :> Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^ 
p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ 
[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]
 

rule 1070
Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_.) + (b_.)*(x_)^(n_.))^ 
(p_.)*((e_) + (f_.)*(x_)^(n_.))^(r_.), x_Symbol] :> Int[x^(m + n*(p + r))*( 
b + a/x^n)^p*(c + d/x^n)^q*(f + e/x^n)^r, x] /; FreeQ[{a, b, c, d, e, f, m, 
 n, q}, x] && EqQ[mn, -n] && IntegerQ[p] && IntegerQ[r]
 

rule 6683
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] 
:> Int[u*(c + d/x)^p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x] /; FreeQ[{a, c, 
d, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &&  !G 
tQ[c, 0]
 
3.7.3.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(165\) vs. \(2(69)=138\).

Time = 0.12 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.93

method result size
risch \(-2 \sqrt {\frac {c \left (a x -1\right )}{a x}}-\frac {\left (\frac {a \ln \left (\frac {-\frac {1}{2} a c +a^{2} c x}{\sqrt {a^{2} c}}+\sqrt {a^{2} c \,x^{2}-a c x}\right )}{\sqrt {a^{2} c}}+\frac {2 \sqrt {2}\, \ln \left (\frac {4 c -3 \left (x +\frac {1}{a}\right ) a c +2 \sqrt {2}\, \sqrt {c}\, \sqrt {a^{2} c \left (x +\frac {1}{a}\right )^{2}-3 \left (x +\frac {1}{a}\right ) a c +2 c}}{x +\frac {1}{a}}\right )}{\sqrt {c}}\right ) \sqrt {c \left (a x -1\right ) a x}\, \sqrt {\frac {c \left (a x -1\right )}{a x}}}{a x -1}\) \(166\)
default \(\frac {\sqrt {\frac {c \left (a x -1\right )}{a x}}\, \left (2 \sqrt {\left (a x -1\right ) x}\, \sqrt {\frac {1}{a}}\, a^{\frac {3}{2}} x^{2}-4 \sqrt {\frac {1}{a}}\, \sqrt {a \,x^{2}-x}\, a^{\frac {3}{2}} x^{2}-3 \sqrt {\frac {1}{a}}\, \ln \left (\frac {2 \sqrt {\left (a x -1\right ) x}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) a \,x^{2}-2 \ln \left (\frac {2 \sqrt {2}\, \sqrt {\frac {1}{a}}\, \sqrt {\left (a x -1\right ) x}\, a -3 a x +1}{a x +1}\right ) \sqrt {a}\, \sqrt {2}\, x^{2}+2 \left (a \,x^{2}-x \right )^{\frac {3}{2}} \sqrt {a}\, \sqrt {\frac {1}{a}}+2 \sqrt {\frac {1}{a}}\, \ln \left (\frac {2 \sqrt {a \,x^{2}-x}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) a \,x^{2}\right )}{x \sqrt {\left (a x -1\right ) x}\, \sqrt {a}\, \sqrt {\frac {1}{a}}}\) \(227\)

input
int((c-c/a/x)^(1/2)/(a*x+1)^2*(-a^2*x^2+1)/x,x,method=_RETURNVERBOSE)
 
output
-2*(c*(a*x-1)/a/x)^(1/2)-(a*ln((-1/2*a*c+a^2*c*x)/(a^2*c)^(1/2)+(a^2*c*x^2 
-a*c*x)^(1/2))/(a^2*c)^(1/2)+2*2^(1/2)/c^(1/2)*ln((4*c-3*(x+1/a)*a*c+2*2^( 
1/2)*c^(1/2)*(a^2*c*(x+1/a)^2-3*(x+1/a)*a*c+2*c)^(1/2))/(x+1/a)))*(c*(a*x- 
1)*a*x)^(1/2)*(c*(a*x-1)/a/x)^(1/2)/(a*x-1)
 
3.7.3.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 206, normalized size of antiderivative = 2.40 \[ \int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=\left [2 \, \sqrt {2} \sqrt {c} \log \left (-\frac {2 \, \sqrt {2} a \sqrt {c} x \sqrt {\frac {a c x - c}{a x}} + 3 \, a c x - c}{a x + 1}\right ) + \sqrt {c} \log \left (-2 \, a c x + 2 \, a \sqrt {c} x \sqrt {\frac {a c x - c}{a x}} + c\right ) - 2 \, \sqrt {\frac {a c x - c}{a x}}, -4 \, \sqrt {2} \sqrt {-c} \arctan \left (\frac {\sqrt {2} \sqrt {-c} \sqrt {\frac {a c x - c}{a x}}}{2 \, c}\right ) + 2 \, \sqrt {-c} \arctan \left (\frac {\sqrt {-c} \sqrt {\frac {a c x - c}{a x}}}{c}\right ) - 2 \, \sqrt {\frac {a c x - c}{a x}}\right ] \]

input
integrate((c-c/a/x)^(1/2)/(a*x+1)^2*(-a^2*x^2+1)/x,x, algorithm="fricas")
 
output
[2*sqrt(2)*sqrt(c)*log(-(2*sqrt(2)*a*sqrt(c)*x*sqrt((a*c*x - c)/(a*x)) + 3 
*a*c*x - c)/(a*x + 1)) + sqrt(c)*log(-2*a*c*x + 2*a*sqrt(c)*x*sqrt((a*c*x 
- c)/(a*x)) + c) - 2*sqrt((a*c*x - c)/(a*x)), -4*sqrt(2)*sqrt(-c)*arctan(1 
/2*sqrt(2)*sqrt(-c)*sqrt((a*c*x - c)/(a*x))/c) + 2*sqrt(-c)*arctan(sqrt(-c 
)*sqrt((a*c*x - c)/(a*x))/c) - 2*sqrt((a*c*x - c)/(a*x))]
 
3.7.3.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 141 vs. \(2 (70) = 140\).

Time = 4.41 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.64 \[ \int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=\begin {cases} - \frac {2 a \left (- \frac {c^{2} \operatorname {atan}{\left (\frac {\sqrt {c - \frac {c}{a x}}}{\sqrt {- c}} \right )}}{a \sqrt {- c}} + \frac {2 \sqrt {2} c^{2} \operatorname {atan}{\left (\frac {\sqrt {2} \sqrt {c - \frac {c}{a x}}}{2 \sqrt {- c}} \right )}}{a \sqrt {- c}} + \frac {c \sqrt {c - \frac {c}{a x}}}{a}\right )}{c} & \text {for}\: \frac {c}{a} \neq 0 \\\frac {3 a \sqrt {c} \left (\frac {\log {\left (- \frac {2}{x} \right )}}{a} - \frac {\log {\left (2 a + \frac {2}{x} \right )}}{a}\right )}{2} - \frac {\sqrt {c} \log {\left (\frac {a}{x} + \frac {1}{x^{2}} \right )}}{2} & \text {otherwise} \end {cases} \]

input
integrate((c-c/a/x)**(1/2)/(a*x+1)**2*(-a**2*x**2+1)/x,x)
 
output
Piecewise((-2*a*(-c**2*atan(sqrt(c - c/(a*x))/sqrt(-c))/(a*sqrt(-c)) + 2*s 
qrt(2)*c**2*atan(sqrt(2)*sqrt(c - c/(a*x))/(2*sqrt(-c)))/(a*sqrt(-c)) + c* 
sqrt(c - c/(a*x))/a)/c, Ne(c/a, 0)), (3*a*sqrt(c)*(log(-2/x)/a - log(2*a + 
 2/x)/a)/2 - sqrt(c)*log(a/x + x**(-2))/2, True))
 
3.7.3.7 Maxima [F]

\[ \int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=\int { -\frac {{\left (a^{2} x^{2} - 1\right )} \sqrt {c - \frac {c}{a x}}}{{\left (a x + 1\right )}^{2} x} \,d x } \]

input
integrate((c-c/a/x)^(1/2)/(a*x+1)^2*(-a^2*x^2+1)/x,x, algorithm="maxima")
 
output
-integrate((a^2*x^2 - 1)*sqrt(c - c/(a*x))/((a*x + 1)^2*x), x)
 
3.7.3.8 Giac [F(-2)]

Exception generated. \[ \int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=\text {Exception raised: TypeError} \]

input
integrate((c-c/a/x)^(1/2)/(a*x+1)^2*(-a^2*x^2+1)/x,x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.7.3.9 Mupad [F(-1)]

Timed out. \[ \int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=-\int \frac {\sqrt {c-\frac {c}{a\,x}}\,\left (a^2\,x^2-1\right )}{x\,{\left (a\,x+1\right )}^2} \,d x \]

input
int(-((c - c/(a*x))^(1/2)*(a^2*x^2 - 1))/(x*(a*x + 1)^2),x)
 
output
-int(((c - c/(a*x))^(1/2)*(a^2*x^2 - 1))/(x*(a*x + 1)^2), x)