3.9.11 \(\int e^{\text {arctanh}(x)} \sqrt {1-x} \sin (x) \, dx\) [811]

3.9.11.1 Optimal result
3.9.11.2 Mathematica [C] (verified)
3.9.11.3 Rubi [A] (verified)
3.9.11.4 Maple [F]
3.9.11.5 Fricas [F]
3.9.11.6 Sympy [F]
3.9.11.7 Maxima [C] (verification not implemented)
3.9.11.8 Giac [C] (verification not implemented)
3.9.11.9 Mupad [F(-1)]

3.9.11.1 Optimal result

Integrand size = 16, antiderivative size = 72 \[ \int e^{\text {arctanh}(x)} \sqrt {1-x} \sin (x) \, dx=-\sqrt {1+x} \cos (x)+\sqrt {\frac {\pi }{2}} \cos (1) \operatorname {FresnelC}\left (\sqrt {\frac {2}{\pi }} \sqrt {1+x}\right )+\sqrt {\frac {\pi }{2}} \operatorname {FresnelS}\left (\sqrt {\frac {2}{\pi }} \sqrt {1+x}\right ) \sin (1) \]

output
1/2*cos(1)*FresnelC(2^(1/2)/Pi^(1/2)*(1+x)^(1/2))*2^(1/2)*Pi^(1/2)+1/2*Fre 
snelS(2^(1/2)/Pi^(1/2)*(1+x)^(1/2))*sin(1)*2^(1/2)*Pi^(1/2)-cos(x)*(1+x)^( 
1/2)
 
3.9.11.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.02 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.99 \[ \int e^{\text {arctanh}(x)} \sqrt {1-x} \sin (x) \, dx=\frac {i e^{-i} \left (-\sqrt {-i (1+x)} \Gamma \left (\frac {3}{2},-i (1+x)\right )+e^{2 i} \sqrt {i (1+x)} \Gamma \left (\frac {3}{2},i (1+x)\right )\right )}{2 \sqrt {1+x}} \]

input
Integrate[E^ArcTanh[x]*Sqrt[1 - x]*Sin[x],x]
 
output
((I/2)*(-(Sqrt[(-I)*(1 + x)]*Gamma[3/2, (-I)*(1 + x)]) + E^(2*I)*Sqrt[I*(1 
 + x)]*Gamma[3/2, I*(1 + x)]))/(E^I*Sqrt[1 + x])
 
3.9.11.3 Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.01, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.625, Rules used = {6679, 3042, 3777, 3042, 3787, 3042, 3785, 3786, 3832, 3833}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {1-x} e^{\text {arctanh}(x)} \sin (x) \, dx\)

\(\Big \downarrow \) 6679

\(\displaystyle \int \sqrt {x+1} \sin (x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {x+1} \sin (x)dx\)

\(\Big \downarrow \) 3777

\(\displaystyle \frac {1}{2} \int \frac {\cos (x)}{\sqrt {x+1}}dx-\sqrt {x+1} \cos (x)\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {\sin \left (x+\frac {\pi }{2}\right )}{\sqrt {x+1}}dx-\sqrt {x+1} \cos (x)\)

\(\Big \downarrow \) 3787

\(\displaystyle \frac {1}{2} \left (\sin (1) \int \frac {\sin (x+1)}{\sqrt {x+1}}dx+\cos (1) \int \frac {\cos (x+1)}{\sqrt {x+1}}dx\right )-\sqrt {x+1} \cos (x)\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\sin (1) \int \frac {\sin (x+1)}{\sqrt {x+1}}dx+\cos (1) \int \frac {\sin \left (x+\frac {\pi }{2}+1\right )}{\sqrt {x+1}}dx\right )-\sqrt {x+1} \cos (x)\)

\(\Big \downarrow \) 3785

\(\displaystyle \frac {1}{2} \left (\sin (1) \int \frac {\sin (x+1)}{\sqrt {x+1}}dx+2 \cos (1) \int \cos (x+1)d\sqrt {x+1}\right )-\sqrt {x+1} \cos (x)\)

\(\Big \downarrow \) 3786

\(\displaystyle \frac {1}{2} \left (2 \sin (1) \int \sin (x+1)d\sqrt {x+1}+2 \cos (1) \int \cos (x+1)d\sqrt {x+1}\right )-\sqrt {x+1} \cos (x)\)

\(\Big \downarrow \) 3832

\(\displaystyle \frac {1}{2} \left (2 \cos (1) \int \cos (x+1)d\sqrt {x+1}+\sqrt {2 \pi } \sin (1) \operatorname {FresnelS}\left (\sqrt {\frac {2}{\pi }} \sqrt {x+1}\right )\right )-\sqrt {x+1} \cos (x)\)

\(\Big \downarrow \) 3833

\(\displaystyle \frac {1}{2} \left (\sqrt {2 \pi } \cos (1) \operatorname {FresnelC}\left (\sqrt {\frac {2}{\pi }} \sqrt {x+1}\right )+\sqrt {2 \pi } \sin (1) \operatorname {FresnelS}\left (\sqrt {\frac {2}{\pi }} \sqrt {x+1}\right )\right )-\sqrt {x+1} \cos (x)\)

input
Int[E^ArcTanh[x]*Sqrt[1 - x]*Sin[x],x]
 
output
-(Sqrt[1 + x]*Cos[x]) + (Sqrt[2*Pi]*Cos[1]*FresnelC[Sqrt[2/Pi]*Sqrt[1 + x] 
] + Sqrt[2*Pi]*FresnelS[Sqrt[2/Pi]*Sqrt[1 + x]]*Sin[1])/2
 

3.9.11.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3777
Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[( 
-(c + d*x)^m)*(Cos[e + f*x]/f), x] + Simp[d*(m/f)   Int[(c + d*x)^(m - 1)*C 
os[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]
 

rule 3785
Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> S 
imp[2/d   Subst[Int[Cos[f*(x^2/d)], x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, 
d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]
 

rule 3786
Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[2/d 
   Subst[Int[Sin[f*(x^2/d)], x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f 
}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]
 

rule 3787
Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Cos 
[(d*e - c*f)/d]   Int[Sin[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] + Simp[Sin[( 
d*e - c*f)/d]   Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c, d 
, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]
 

rule 3832
Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[ 
d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]
 

rule 3833
Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[ 
d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]
 

rule 6679
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol 
] :> Simp[c^p   Int[u*(1 + d*(x/c))^p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x] 
, x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ[p] 
|| GtQ[c, 0])
 
3.9.11.4 Maple [F]

\[\int \frac {\left (1+x \right ) \sqrt {1-x}\, \sin \left (x \right )}{\sqrt {-x^{2}+1}}d x\]

input
int((1+x)/(-x^2+1)^(1/2)*(1-x)^(1/2)*sin(x),x)
 
output
int((1+x)/(-x^2+1)^(1/2)*(1-x)^(1/2)*sin(x),x)
 
3.9.11.5 Fricas [F]

\[ \int e^{\text {arctanh}(x)} \sqrt {1-x} \sin (x) \, dx=\int { \frac {{\left (x + 1\right )} \sqrt {-x + 1} \sin \left (x\right )}{\sqrt {-x^{2} + 1}} \,d x } \]

input
integrate((1+x)/(-x^2+1)^(1/2)*(1-x)^(1/2)*sin(x),x, algorithm="fricas")
 
output
integral(-sqrt(-x^2 + 1)*sqrt(-x + 1)*sin(x)/(x - 1), x)
 
3.9.11.6 Sympy [F]

\[ \int e^{\text {arctanh}(x)} \sqrt {1-x} \sin (x) \, dx=\int \frac {\sqrt {1 - x} \left (x + 1\right ) \sin {\left (x \right )}}{\sqrt {- \left (x - 1\right ) \left (x + 1\right )}}\, dx \]

input
integrate((1+x)/(-x**2+1)**(1/2)*(1-x)**(1/2)*sin(x),x)
 
output
Integral(sqrt(1 - x)*(x + 1)*sin(x)/sqrt(-(x - 1)*(x + 1)), x)
 
3.9.11.7 Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.31 (sec) , antiderivative size = 498, normalized size of antiderivative = 6.92 \[ \int e^{\text {arctanh}(x)} \sqrt {1-x} \sin (x) \, dx=\text {Too large to display} \]

input
integrate((1+x)/(-x^2+1)^(1/2)*(1-x)^(1/2)*sin(x),x, algorithm="maxima")
 
output
-1/2*(((-I*sqrt(pi)*(erf(sqrt(I*x + I)) - 1) + I*sqrt(pi)*(erf(sqrt(-I*x - 
 I)) - 1))*cos(1) + (sqrt(pi)*(erf(sqrt(I*x + I)) - 1) + sqrt(pi)*(erf(sqr 
t(-I*x - I)) - 1))*sin(1))*cos(1/2*arctan2(x + 1, 0)) - ((sqrt(pi)*(erf(sq 
rt(I*x + I)) - 1) + sqrt(pi)*(erf(sqrt(-I*x - I)) - 1))*cos(1) - (-I*sqrt( 
pi)*(erf(sqrt(I*x + I)) - 1) + I*sqrt(pi)*(erf(sqrt(-I*x - I)) - 1))*sin(1 
))*sin(1/2*arctan2(x + 1, 0)))*sqrt(x + 1)/sqrt(abs(x + 1)) - 1/2*(((I*sqr 
t(pi)*(erf(sqrt(I*x + I)) - 1) - I*sqrt(pi)*(erf(sqrt(-I*x - I)) - 1))*cos 
(1) - (sqrt(pi)*(erf(sqrt(I*x + I)) - 1) + sqrt(pi)*(erf(sqrt(-I*x - I)) - 
 1))*sin(1))*abs(x + 1)*cos(1/2*arctan2(x + 1, 0)) + ((sqrt(pi)*(erf(sqrt( 
I*x + I)) - 1) + sqrt(pi)*(erf(sqrt(-I*x - I)) - 1))*cos(1) + (I*sqrt(pi)* 
(erf(sqrt(I*x + I)) - 1) - I*sqrt(pi)*(erf(sqrt(-I*x - I)) - 1))*sin(1))*a 
bs(x + 1)*sin(1/2*arctan2(x + 1, 0)) + (((I*cos(1) - sin(1))*gamma(3/2, I* 
x + I) + (-I*cos(1) - sin(1))*gamma(3/2, -I*x - I))*x + (I*cos(1) - sin(1) 
)*gamma(3/2, I*x + I) + (-I*cos(1) - sin(1))*gamma(3/2, -I*x - I))*cos(3/2 
*arctan2(x + 1, 0)) + (((cos(1) + I*sin(1))*gamma(3/2, I*x + I) + (cos(1) 
- I*sin(1))*gamma(3/2, -I*x - I))*x + (cos(1) + I*sin(1))*gamma(3/2, I*x + 
 I) + (cos(1) - I*sin(1))*gamma(3/2, -I*x - I))*sin(3/2*arctan2(x + 1, 0)) 
)*sqrt(abs(x + 1))/(x + 1)^(3/2)
 
3.9.11.8 Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.27 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.92 \[ \int e^{\text {arctanh}(x)} \sqrt {1-x} \sin (x) \, dx=\left (\frac {1}{8} i - \frac {1}{8}\right ) \, \sqrt {2} \sqrt {\pi } \operatorname {erf}\left (-\left (\frac {1}{2} i + \frac {1}{2}\right ) \, \sqrt {2} \sqrt {x + 1}\right ) e^{i} - \left (\frac {1}{8} i + \frac {1}{8}\right ) \, \sqrt {2} \sqrt {\pi } \operatorname {erf}\left (\left (\frac {1}{2} i - \frac {1}{2}\right ) \, \sqrt {2} \sqrt {x + 1}\right ) e^{\left (-i\right )} - \frac {1}{2} \, \sqrt {x + 1} e^{\left (i \, x\right )} - \frac {1}{2} \, \sqrt {x + 1} e^{\left (-i \, x\right )} - 0.339605729125000 \]

input
integrate((1+x)/(-x^2+1)^(1/2)*(1-x)^(1/2)*sin(x),x, algorithm="giac")
 
output
(1/8*I - 1/8)*sqrt(2)*sqrt(pi)*erf(-(1/2*I + 1/2)*sqrt(2)*sqrt(x + 1))*e^I 
 - (1/8*I + 1/8)*sqrt(2)*sqrt(pi)*erf((1/2*I - 1/2)*sqrt(2)*sqrt(x + 1))*e 
^(-I) - 1/2*sqrt(x + 1)*e^(I*x) - 1/2*sqrt(x + 1)*e^(-I*x) - 0.33960572912 
5000
 
3.9.11.9 Mupad [F(-1)]

Timed out. \[ \int e^{\text {arctanh}(x)} \sqrt {1-x} \sin (x) \, dx=\int \frac {\sin \left (x\right )\,\sqrt {1-x}\,\left (x+1\right )}{\sqrt {1-x^2}} \,d x \]

input
int((sin(x)*(1 - x)^(1/2)*(x + 1))/(1 - x^2)^(1/2),x)
 
output
int((sin(x)*(1 - x)^(1/2)*(x + 1))/(1 - x^2)^(1/2), x)