3.2.46 \(\int \frac {1}{x^2 \sqrt {\text {arctanh}(\tanh (a+b x))}} \, dx\) [146]

3.2.46.1 Optimal result
3.2.46.2 Mathematica [A] (verified)
3.2.46.3 Rubi [A] (verified)
3.2.46.4 Maple [A] (verified)
3.2.46.5 Fricas [A] (verification not implemented)
3.2.46.6 Sympy [F]
3.2.46.7 Maxima [F]
3.2.46.8 Giac [A] (verification not implemented)
3.2.46.9 Mupad [B] (verification not implemented)

3.2.46.1 Optimal result

Integrand size = 15, antiderivative size = 94 \[ \int \frac {1}{x^2 \sqrt {\text {arctanh}(\tanh (a+b x))}} \, dx=\frac {b \arctan \left (\frac {\sqrt {\text {arctanh}(\tanh (a+b x))}}{\sqrt {b x-\text {arctanh}(\tanh (a+b x))}}\right )}{(b x-\text {arctanh}(\tanh (a+b x)))^{3/2}}-\frac {1}{x \sqrt {\text {arctanh}(\tanh (a+b x))}}+\frac {b}{(b x-\text {arctanh}(\tanh (a+b x))) \sqrt {\text {arctanh}(\tanh (a+b x))}} \]

output
b*arctan(arctanh(tanh(b*x+a))^(1/2)/(b*x-arctanh(tanh(b*x+a)))^(1/2))/(b*x 
-arctanh(tanh(b*x+a)))^(3/2)-1/x/arctanh(tanh(b*x+a))^(1/2)+b/(b*x-arctanh 
(tanh(b*x+a)))/arctanh(tanh(b*x+a))^(1/2)
 
3.2.46.2 Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.83 \[ \int \frac {1}{x^2 \sqrt {\text {arctanh}(\tanh (a+b x))}} \, dx=\frac {b \text {arctanh}\left (\frac {\sqrt {\text {arctanh}(\tanh (a+b x))}}{\sqrt {-b x+\text {arctanh}(\tanh (a+b x))}}\right )}{(-b x+\text {arctanh}(\tanh (a+b x)))^{3/2}}-\frac {\sqrt {\text {arctanh}(\tanh (a+b x))}}{x (-b x+\text {arctanh}(\tanh (a+b x)))} \]

input
Integrate[1/(x^2*Sqrt[ArcTanh[Tanh[a + b*x]]]),x]
 
output
(b*ArcTanh[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[-(b*x) + ArcTanh[Tanh[a + b*x 
]]]])/(-(b*x) + ArcTanh[Tanh[a + b*x]])^(3/2) - Sqrt[ArcTanh[Tanh[a + b*x] 
]]/(x*(-(b*x) + ArcTanh[Tanh[a + b*x]]))
 
3.2.46.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.06, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2599, 2594, 2592}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^2 \sqrt {\text {arctanh}(\tanh (a+b x))}} \, dx\)

\(\Big \downarrow \) 2599

\(\displaystyle -\frac {1}{2} b \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^{3/2}}dx-\frac {1}{x \sqrt {\text {arctanh}(\tanh (a+b x))}}\)

\(\Big \downarrow \) 2594

\(\displaystyle -\frac {1}{2} b \left (-\frac {\int \frac {1}{x \sqrt {\text {arctanh}(\tanh (a+b x))}}dx}{b x-\text {arctanh}(\tanh (a+b x))}-\frac {2}{(b x-\text {arctanh}(\tanh (a+b x))) \sqrt {\text {arctanh}(\tanh (a+b x))}}\right )-\frac {1}{x \sqrt {\text {arctanh}(\tanh (a+b x))}}\)

\(\Big \downarrow \) 2592

\(\displaystyle -\frac {1}{2} b \left (-\frac {2 \arctan \left (\frac {\sqrt {\text {arctanh}(\tanh (a+b x))}}{\sqrt {b x-\text {arctanh}(\tanh (a+b x))}}\right )}{(b x-\text {arctanh}(\tanh (a+b x)))^{3/2}}-\frac {2}{(b x-\text {arctanh}(\tanh (a+b x))) \sqrt {\text {arctanh}(\tanh (a+b x))}}\right )-\frac {1}{x \sqrt {\text {arctanh}(\tanh (a+b x))}}\)

input
Int[1/(x^2*Sqrt[ArcTanh[Tanh[a + b*x]]]),x]
 
output
-1/2*(b*((-2*ArcTan[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[b*x - ArcTanh[Tanh[a 
 + b*x]]]])/(b*x - ArcTanh[Tanh[a + b*x]])^(3/2) - 2/((b*x - ArcTanh[Tanh[ 
a + b*x]])*Sqrt[ArcTanh[Tanh[a + b*x]]]))) - 1/(x*Sqrt[ArcTanh[Tanh[a + b* 
x]]])
 

3.2.46.3.1 Defintions of rubi rules used

rule 2592
Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simpli 
fy[D[v, x]]}, Simp[2*(ArcTan[Sqrt[v]/Rt[(b*u - a*v)/a, 2]]/(a*Rt[(b*u - a*v 
)/a, 2])), x] /; NeQ[b*u - a*v, 0] && PosQ[(b*u - a*v)/a]] /; PiecewiseLine 
arQ[u, v, x]
 

rule 2594
Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[ 
D[v, x]]}, Simp[v^(n + 1)/((n + 1)*(b*u - a*v)), x] - Simp[a*((n + 1)/((n + 
 1)*(b*u - a*v)))   Int[v^(n + 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; Piecew 
iseLinearQ[u, v, x] && LtQ[n, -1]
 

rule 2599
Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Sim 
plify[D[v, x]]}, Simp[u^(m + 1)*(v^n/(a*(m + 1))), x] - Simp[b*(n/(a*(m + 1 
)))   Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m, n} 
, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0 
] &&  !(ILtQ[m + n, -2] && (FractionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ 
[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]) || (ILt 
Q[m, 0] &&  !IntegerQ[n]))
 
3.2.46.4 Maple [A] (verified)

Time = 0.10 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.01

method result size
default \(2 b \left (\frac {2 \sqrt {\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )}}{\left (-4 \,\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )+4 b x \right ) x b}-\frac {2 \,\operatorname {arctanh}\left (\frac {\sqrt {\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )}}{\sqrt {\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x}}\right )}{\left (-4 \,\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )+4 b x \right ) \sqrt {\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x}}\right )\) \(95\)

input
int(1/x^2/arctanh(tanh(b*x+a))^(1/2),x,method=_RETURNVERBOSE)
 
output
2*b*(2*arctanh(tanh(b*x+a))^(1/2)/(-4*arctanh(tanh(b*x+a))+4*b*x)/x/b-2/(- 
4*arctanh(tanh(b*x+a))+4*b*x)/(arctanh(tanh(b*x+a))-b*x)^(1/2)*arctanh(arc 
tanh(tanh(b*x+a))^(1/2)/(arctanh(tanh(b*x+a))-b*x)^(1/2)))
 
3.2.46.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.99 \[ \int \frac {1}{x^2 \sqrt {\text {arctanh}(\tanh (a+b x))}} \, dx=\left [\frac {\sqrt {a} b x \log \left (\frac {b x + 2 \, \sqrt {b x + a} \sqrt {a} + 2 \, a}{x}\right ) - 2 \, \sqrt {b x + a} a}{2 \, a^{2} x}, -\frac {\sqrt {-a} b x \arctan \left (\frac {\sqrt {b x + a} \sqrt {-a}}{a}\right ) + \sqrt {b x + a} a}{a^{2} x}\right ] \]

input
integrate(1/x^2/arctanh(tanh(b*x+a))^(1/2),x, algorithm="fricas")
 
output
[1/2*(sqrt(a)*b*x*log((b*x + 2*sqrt(b*x + a)*sqrt(a) + 2*a)/x) - 2*sqrt(b* 
x + a)*a)/(a^2*x), -(sqrt(-a)*b*x*arctan(sqrt(b*x + a)*sqrt(-a)/a) + sqrt( 
b*x + a)*a)/(a^2*x)]
 
3.2.46.6 Sympy [F]

\[ \int \frac {1}{x^2 \sqrt {\text {arctanh}(\tanh (a+b x))}} \, dx=\int \frac {1}{x^{2} \sqrt {\operatorname {atanh}{\left (\tanh {\left (a + b x \right )} \right )}}}\, dx \]

input
integrate(1/x**2/atanh(tanh(b*x+a))**(1/2),x)
 
output
Integral(1/(x**2*sqrt(atanh(tanh(a + b*x)))), x)
 
3.2.46.7 Maxima [F]

\[ \int \frac {1}{x^2 \sqrt {\text {arctanh}(\tanh (a+b x))}} \, dx=\int { \frac {1}{x^{2} \sqrt {\operatorname {artanh}\left (\tanh \left (b x + a\right )\right )}} \,d x } \]

input
integrate(1/x^2/arctanh(tanh(b*x+a))^(1/2),x, algorithm="maxima")
 
output
integrate(1/(x^2*sqrt(arctanh(tanh(b*x + a)))), x)
 
3.2.46.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 47, normalized size of antiderivative = 0.50 \[ \int \frac {1}{x^2 \sqrt {\text {arctanh}(\tanh (a+b x))}} \, dx=-\frac {\frac {b^{2} \arctan \left (\frac {\sqrt {b x + a}}{\sqrt {-a}}\right )}{\sqrt {-a} a} + \frac {\sqrt {b x + a} b}{a x}}{b} \]

input
integrate(1/x^2/arctanh(tanh(b*x+a))^(1/2),x, algorithm="giac")
 
output
-(b^2*arctan(sqrt(b*x + a)/sqrt(-a))/(sqrt(-a)*a) + sqrt(b*x + a)*b/(a*x)) 
/b
 
3.2.46.9 Mupad [B] (verification not implemented)

Time = 9.32 (sec) , antiderivative size = 570, normalized size of antiderivative = 6.06 \[ \int \frac {1}{x^2 \sqrt {\text {arctanh}(\tanh (a+b x))}} \, dx=\frac {2\,\sqrt {\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}}}{x\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}+\frac {\sqrt {2}\,b\,\ln \left (\frac {\left (\sqrt {2}\,b\,x-\sqrt {2}\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )+\sqrt {\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}}\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}\,2{}\mathrm {i}\right )\,\left ({\left (2\,a-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^3-8\,a^3-6\,a\,{\left (2\,a-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2+12\,a^2\,\left (2\,a-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )\right )\,1{}\mathrm {i}}{2\,x\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}}\right )\,1{}\mathrm {i}}{{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^{3/2}} \]

input
int(1/(x^2*atanh(tanh(a + b*x))^(1/2)),x)
 
output
(2*(log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp( 
2*a)*exp(2*b*x) + 1))/2)^(1/2))/(x*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log 
((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)) + (2^(1/2)*b 
*log((((log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/( 
exp(2*a)*exp(2*b*x) + 1))/2)^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log 
((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(1/2)*2i - 2^ 
(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp 
(2*a)*exp(2*b*x) + 1)) + 2*b*x) + 2^(1/2)*b*x)*((2*a - log((2*exp(2*a)*exp 
(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2 
*b*x)^3 - 8*a^3 - 6*a*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b 
*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^2 + 12*a^2*(2*a - lo 
g((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp 
(2*b*x) + 1)) + 2*b*x))*1i)/(2*x*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log(( 
2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(1/2)))*1i)/(lo 
g(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp 
(2*b*x) + 1)) + 2*b*x)^(3/2)