3.4.40 \(\int \text {arctanh}(1+i d+d \cot (a+b x)) \, dx\) [340]

3.4.40.1 Optimal result
3.4.40.2 Mathematica [B] (warning: unable to verify)
3.4.40.3 Rubi [A] (verified)
3.4.40.4 Maple [B] (verified)
3.4.40.5 Fricas [A] (verification not implemented)
3.4.40.6 Sympy [F]
3.4.40.7 Maxima [B] (verification not implemented)
3.4.40.8 Giac [F]
3.4.40.9 Mupad [F(-1)]

3.4.40.1 Optimal result

Integrand size = 16, antiderivative size = 93 \[ \int \text {arctanh}(1+i d+d \cot (a+b x)) \, dx=\frac {1}{2} i b x^2+x \text {arctanh}(1+i d+d \cot (a+b x))-\frac {1}{2} x \log \left (1-(1+i d) e^{2 i a+2 i b x}\right )+\frac {i \operatorname {PolyLog}\left (2,(1+i d) e^{2 i a+2 i b x}\right )}{4 b} \]

output
1/2*I*b*x^2+x*arctanh(1+I*d+d*cot(b*x+a))-1/2*x*ln(1-(1+I*d)*exp(2*I*a+2*I 
*b*x))+1/4*I*polylog(2,(1+I*d)*exp(2*I*a+2*I*b*x))/b
 
3.4.40.2 Mathematica [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(709\) vs. \(2(93)=186\).

Time = 10.66 (sec) , antiderivative size = 709, normalized size of antiderivative = 7.62 \[ \int \text {arctanh}(1+i d+d \cot (a+b x)) \, dx=x \text {arctanh}(1+i d+d \cot (a+b x))+\frac {x \csc ^2(a+b x) \left (2 b x \log (2 \cos (b x) (\cos (b x)-i \sin (b x)))+i \log \left (\frac {\sec (b x) (\cos (a)-i \sin (a)) (d \cos (a+b x)+(2+i d) \sin (a+b x))}{2 (-i+d)}\right ) \log (1-i \tan (b x))-i \log \left (\frac {1}{2} \sec (b x) (-i \cos (a)+\sin (a)) (d \cos (a+b x)+(2+i d) \sin (a+b x))\right ) \log (1+i \tan (b x))+i \operatorname {PolyLog}(2,-\cos (2 b x)+i \sin (2 b x))-i \operatorname {PolyLog}\left (2,\frac {1}{2} \sec (b x) ((2+i d) \cos (a)-d \sin (a)) (\cos (a+b x)+i \sin (a+b x))\right )+i \operatorname {PolyLog}\left (2,\frac {(\cos (a)-i \sin (a)) ((-2-i d) \cos (a)+d \sin (a)) (i+\tan (b x))}{2 (-i+d)}\right )\right ) (\cos (b x)-i \sin (b x)) (\cos (b x)+i \sin (b x))}{(i+\cot (a+b x)) (2+i d+d \cot (a+b x)) \left (2 i b x+\log \left (1+\frac {1}{2} \sec (b x) ((-2-i d) \cos (a)+d \sin (a)) (\cos (a+b x)+i \sin (a+b x))\right )-\log \left (\frac {1}{2} \sec (b x) (-i \cos (a)+\sin (a)) (d \cos (a+b x)+(2+i d) \sin (a+b x))\right )+\frac {(-2 i+d) \cos (a+b x) (\log (1-i \tan (b x))-\log (1+i \tan (b x)))}{d \cos (a+b x)+(2+i d) \sin (a+b x)}+\frac {d (\log (1-i \tan (b x))-\log (1+i \tan (b x))) \sin (a+b x)}{-i d \cos (a+b x)+(-2 i+d) \sin (a+b x)}+2 b x \tan (b x)-i \log \left (1+\frac {1}{2} \sec (b x) ((-2-i d) \cos (a)+d \sin (a)) (\cos (a+b x)+i \sin (a+b x))\right ) \tan (b x)+i \log \left (\frac {1}{2} \sec (b x) (-i \cos (a)+\sin (a)) (d \cos (a+b x)+(2+i d) \sin (a+b x))\right ) \tan (b x)-i \log (1-i \tan (b x)) \tan (b x)+i \log (1+i \tan (b x)) \tan (b x)\right )} \]

input
Integrate[ArcTanh[1 + I*d + d*Cot[a + b*x]],x]
 
output
x*ArcTanh[1 + I*d + d*Cot[a + b*x]] + (x*Csc[a + b*x]^2*(2*b*x*Log[2*Cos[b 
*x]*(Cos[b*x] - I*Sin[b*x])] + I*Log[(Sec[b*x]*(Cos[a] - I*Sin[a])*(d*Cos[ 
a + b*x] + (2 + I*d)*Sin[a + b*x]))/(2*(-I + d))]*Log[1 - I*Tan[b*x]] - I* 
Log[(Sec[b*x]*((-I)*Cos[a] + Sin[a])*(d*Cos[a + b*x] + (2 + I*d)*Sin[a + b 
*x]))/2]*Log[1 + I*Tan[b*x]] + I*PolyLog[2, -Cos[2*b*x] + I*Sin[2*b*x]] - 
I*PolyLog[2, (Sec[b*x]*((2 + I*d)*Cos[a] - d*Sin[a])*(Cos[a + b*x] + I*Sin 
[a + b*x]))/2] + I*PolyLog[2, ((Cos[a] - I*Sin[a])*((-2 - I*d)*Cos[a] + d* 
Sin[a])*(I + Tan[b*x]))/(2*(-I + d))])*(Cos[b*x] - I*Sin[b*x])*(Cos[b*x] + 
 I*Sin[b*x]))/((I + Cot[a + b*x])*(2 + I*d + d*Cot[a + b*x])*((2*I)*b*x + 
Log[1 + (Sec[b*x]*((-2 - I*d)*Cos[a] + d*Sin[a])*(Cos[a + b*x] + I*Sin[a + 
 b*x]))/2] - Log[(Sec[b*x]*((-I)*Cos[a] + Sin[a])*(d*Cos[a + b*x] + (2 + I 
*d)*Sin[a + b*x]))/2] + ((-2*I + d)*Cos[a + b*x]*(Log[1 - I*Tan[b*x]] - Lo 
g[1 + I*Tan[b*x]]))/(d*Cos[a + b*x] + (2 + I*d)*Sin[a + b*x]) + (d*(Log[1 
- I*Tan[b*x]] - Log[1 + I*Tan[b*x]])*Sin[a + b*x])/((-I)*d*Cos[a + b*x] + 
(-2*I + d)*Sin[a + b*x]) + 2*b*x*Tan[b*x] - I*Log[1 + (Sec[b*x]*((-2 - I*d 
)*Cos[a] + d*Sin[a])*(Cos[a + b*x] + I*Sin[a + b*x]))/2]*Tan[b*x] + I*Log[ 
(Sec[b*x]*((-I)*Cos[a] + Sin[a])*(d*Cos[a + b*x] + (2 + I*d)*Sin[a + b*x]) 
)/2]*Tan[b*x] - I*Log[1 - I*Tan[b*x]]*Tan[b*x] + I*Log[1 + I*Tan[b*x]]*Tan 
[b*x]))
 
3.4.40.3 Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.35, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.312, Rules used = {6811, 2615, 2620, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \text {arctanh}(d \cot (a+b x)+i d+1) \, dx\)

\(\Big \downarrow \) 6811

\(\displaystyle i b \int \frac {x}{1-(i d+1) e^{2 i a+2 i b x}}dx+x \text {arctanh}(d \cot (a+b x)+i d+1)\)

\(\Big \downarrow \) 2615

\(\displaystyle i b \left (\frac {x^2}{2}+(1+i d) \int \frac {e^{2 i a+2 i b x} x}{1-(i d+1) e^{2 i a+2 i b x}}dx\right )+x \text {arctanh}(d \cot (a+b x)+i d+1)\)

\(\Big \downarrow \) 2620

\(\displaystyle i b \left (\frac {x^2}{2}+(1+i d) \left (\frac {\int \log \left (1-(i d+1) e^{2 i a+2 i b x}\right )dx}{2 b (-d+i)}-\frac {x \log \left (1-(1+i d) e^{2 i a+2 i b x}\right )}{2 b (-d+i)}\right )\right )+x \text {arctanh}(d \cot (a+b x)+i d+1)\)

\(\Big \downarrow \) 2715

\(\displaystyle i b \left (\frac {x^2}{2}+(1+i d) \left (-\frac {i \int e^{-2 i a-2 i b x} \log \left (1-(i d+1) e^{2 i a+2 i b x}\right )de^{2 i a+2 i b x}}{4 b^2 (-d+i)}-\frac {x \log \left (1-(1+i d) e^{2 i a+2 i b x}\right )}{2 b (-d+i)}\right )\right )+x \text {arctanh}(d \cot (a+b x)+i d+1)\)

\(\Big \downarrow \) 2838

\(\displaystyle x \text {arctanh}(d \cot (a+b x)+i d+1)+i b \left (\frac {x^2}{2}+(1+i d) \left (\frac {i \operatorname {PolyLog}\left (2,(i d+1) e^{2 i a+2 i b x}\right )}{4 b^2 (-d+i)}-\frac {x \log \left (1-(1+i d) e^{2 i a+2 i b x}\right )}{2 b (-d+i)}\right )\right )\)

input
Int[ArcTanh[1 + I*d + d*Cot[a + b*x]],x]
 
output
x*ArcTanh[1 + I*d + d*Cot[a + b*x]] + I*b*(x^2/2 + (1 + I*d)*(-1/2*(x*Log[ 
1 - (1 + I*d)*E^((2*I)*a + (2*I)*b*x)])/(b*(I - d)) + ((I/4)*PolyLog[2, (1 
 + I*d)*E^((2*I)*a + (2*I)*b*x)])/(b^2*(I - d))))
 

3.4.40.3.1 Defintions of rubi rules used

rule 2615
Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x 
_))))^(n_.)), x_Symbol] :> Simp[(c + d*x)^(m + 1)/(a*d*(m + 1)), x] - Simp[ 
b/a   Int[(c + d*x)^m*((F^(g*(e + f*x)))^n/(a + b*(F^(g*(e + f*x)))^n)), x] 
, x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2620
Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/ 
((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp 
[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x] - Si 
mp[d*(m/(b*f*g*n*Log[F]))   Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x 
)))^n/a)], x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 6811
Int[ArcTanh[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)], x_Symbol] :> Simp[x*Arc 
Tanh[c + d*Cot[a + b*x]], x] + Simp[I*b   Int[x/(c - I*d - c*E^(2*I*a + 2*I 
*b*x)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - I*d)^2, 1]
 
3.4.40.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 306 vs. \(2 (76 ) = 152\).

Time = 1.50 (sec) , antiderivative size = 307, normalized size of antiderivative = 3.30

method result size
derivativedivides \(\frac {\frac {i \operatorname {arctanh}\left (1+i d +d \cot \left (b x +a \right )\right ) d \ln \left (-i d +d \cot \left (b x +a \right )\right )}{2}-\frac {i \operatorname {arctanh}\left (1+i d +d \cot \left (b x +a \right )\right ) d \ln \left (i d +d \cot \left (b x +a \right )\right )}{2}-\frac {d^{2} \left (-\frac {i \left (-\frac {\operatorname {dilog}\left (\frac {i \left (-i d +d \cot \left (b x +a \right )-i \left (2 i-2 d \right )\right )}{2 i-2 d}\right )}{2}-\frac {\ln \left (-i d +d \cot \left (b x +a \right )\right ) \ln \left (\frac {i \left (-i d +d \cot \left (b x +a \right )-i \left (2 i-2 d \right )\right )}{2 i-2 d}\right )}{2}+\frac {\operatorname {dilog}\left (-\frac {i \left (i d +d \cot \left (b x +a \right )\right )}{2 d}\right )}{2}+\frac {\ln \left (-i d +d \cot \left (b x +a \right )\right ) \ln \left (-\frac {i \left (i d +d \cot \left (b x +a \right )\right )}{2 d}\right )}{2}\right )}{d}+\frac {i \left (\frac {\ln \left (i d +d \cot \left (b x +a \right )\right )^{2}}{4}-\frac {\operatorname {dilog}\left (1+\frac {i d}{2}+\frac {d \cot \left (b x +a \right )}{2}\right )}{2}-\frac {\ln \left (i d +d \cot \left (b x +a \right )\right ) \ln \left (1+\frac {i d}{2}+\frac {d \cot \left (b x +a \right )}{2}\right )}{2}\right )}{d}\right )}{2}}{b d}\) \(307\)
default \(\frac {\frac {i \operatorname {arctanh}\left (1+i d +d \cot \left (b x +a \right )\right ) d \ln \left (-i d +d \cot \left (b x +a \right )\right )}{2}-\frac {i \operatorname {arctanh}\left (1+i d +d \cot \left (b x +a \right )\right ) d \ln \left (i d +d \cot \left (b x +a \right )\right )}{2}-\frac {d^{2} \left (-\frac {i \left (-\frac {\operatorname {dilog}\left (\frac {i \left (-i d +d \cot \left (b x +a \right )-i \left (2 i-2 d \right )\right )}{2 i-2 d}\right )}{2}-\frac {\ln \left (-i d +d \cot \left (b x +a \right )\right ) \ln \left (\frac {i \left (-i d +d \cot \left (b x +a \right )-i \left (2 i-2 d \right )\right )}{2 i-2 d}\right )}{2}+\frac {\operatorname {dilog}\left (-\frac {i \left (i d +d \cot \left (b x +a \right )\right )}{2 d}\right )}{2}+\frac {\ln \left (-i d +d \cot \left (b x +a \right )\right ) \ln \left (-\frac {i \left (i d +d \cot \left (b x +a \right )\right )}{2 d}\right )}{2}\right )}{d}+\frac {i \left (\frac {\ln \left (i d +d \cot \left (b x +a \right )\right )^{2}}{4}-\frac {\operatorname {dilog}\left (1+\frac {i d}{2}+\frac {d \cot \left (b x +a \right )}{2}\right )}{2}-\frac {\ln \left (i d +d \cot \left (b x +a \right )\right ) \ln \left (1+\frac {i d}{2}+\frac {d \cot \left (b x +a \right )}{2}\right )}{2}\right )}{d}\right )}{2}}{b d}\) \(307\)
risch \(\text {Expression too large to display}\) \(1655\)

input
int(arctanh(1+I*d+d*cot(b*x+a)),x,method=_RETURNVERBOSE)
 
output
1/b/d*(1/2*I*arctanh(1+I*d+d*cot(b*x+a))*d*ln(-I*d+d*cot(b*x+a))-1/2*I*arc 
tanh(1+I*d+d*cot(b*x+a))*d*ln(I*d+d*cot(b*x+a))-1/2*d^2*(-I/d*(-1/2*dilog( 
I*(-I*d+d*cot(b*x+a)-I*(2*I-2*d))/(2*I-2*d))-1/2*ln(-I*d+d*cot(b*x+a))*ln( 
I*(-I*d+d*cot(b*x+a)-I*(2*I-2*d))/(2*I-2*d))+1/2*dilog(-1/2*I*(I*d+d*cot(b 
*x+a))/d)+1/2*ln(-I*d+d*cot(b*x+a))*ln(-1/2*I*(I*d+d*cot(b*x+a))/d))+I/d*( 
1/4*ln(I*d+d*cot(b*x+a))^2-1/2*dilog(1+1/2*I*d+1/2*d*cot(b*x+a))-1/2*ln(I* 
d+d*cot(b*x+a))*ln(1+1/2*I*d+1/2*d*cot(b*x+a)))))
 
3.4.40.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.31 \[ \int \text {arctanh}(1+i d+d \cot (a+b x)) \, dx=\frac {2 i \, b^{2} x^{2} + 2 \, b x \log \left (-\frac {{\left ({\left (d - i\right )} e^{\left (2 i \, b x + 2 i \, a\right )} + i\right )} e^{\left (-2 i \, b x - 2 i \, a\right )}}{d}\right ) - 2 i \, a^{2} - 2 \, {\left (b x + a\right )} \log \left ({\left (-i \, d - 1\right )} e^{\left (2 i \, b x + 2 i \, a\right )} + 1\right ) + 2 \, a \log \left (\frac {{\left (d - i\right )} e^{\left (2 i \, b x + 2 i \, a\right )} + i}{d - i}\right ) + i \, {\rm Li}_2\left (-{\left (-i \, d - 1\right )} e^{\left (2 i \, b x + 2 i \, a\right )}\right )}{4 \, b} \]

input
integrate(arctanh(1+I*d+d*cot(b*x+a)),x, algorithm="fricas")
 
output
1/4*(2*I*b^2*x^2 + 2*b*x*log(-((d - I)*e^(2*I*b*x + 2*I*a) + I)*e^(-2*I*b* 
x - 2*I*a)/d) - 2*I*a^2 - 2*(b*x + a)*log((-I*d - 1)*e^(2*I*b*x + 2*I*a) + 
 1) + 2*a*log(((d - I)*e^(2*I*b*x + 2*I*a) + I)/(d - I)) + I*dilog(-(-I*d 
- 1)*e^(2*I*b*x + 2*I*a)))/b
 
3.4.40.6 Sympy [F]

\[ \int \text {arctanh}(1+i d+d \cot (a+b x)) \, dx=\int \operatorname {atanh}{\left (d \cot {\left (a + b x \right )} + i d + 1 \right )}\, dx \]

input
integrate(atanh(1+I*d+d*cot(b*x+a)),x)
 
output
Integral(atanh(d*cot(a + b*x) + I*d + 1), x)
 
3.4.40.7 Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 288 vs. \(2 (66) = 132\).

Time = 0.28 (sec) , antiderivative size = 288, normalized size of antiderivative = 3.10 \[ \int \text {arctanh}(1+i d+d \cot (a+b x)) \, dx=-\frac {4 \, {\left (b x + a\right )} d {\left (\frac {\log \left ({\left (i \, d + 2\right )} \tan \left (b x + a\right ) + d\right )}{d} - \frac {\log \left (i \, \tan \left (b x + a\right ) + 1\right )}{d}\right )} - d {\left (\frac {2 i \, {\left (\log \left ({\left (i \, d + 2\right )} \tan \left (b x + a\right ) + d\right ) \log \left (\frac {{\left (d - 2 i\right )} \tan \left (b x + a\right ) - i \, d}{2 i \, d + 2} + 1\right ) + {\rm Li}_2\left (-\frac {{\left (d - 2 i\right )} \tan \left (b x + a\right ) - i \, d}{2 i \, d + 2}\right )\right )}}{d} + \frac {2 i \, {\left (\log \left (\frac {1}{2} \, {\left (d - 2 i\right )} \tan \left (b x + a\right ) - \frac {1}{2} i \, d\right ) \log \left (i \, \tan \left (b x + a\right ) + 1\right ) + {\rm Li}_2\left (-\frac {1}{2} \, {\left (d - 2 i\right )} \tan \left (b x + a\right ) + \frac {1}{2} i \, d + 1\right )\right )}}{d} - \frac {2 i \, \log \left ({\left (i \, d + 2\right )} \tan \left (b x + a\right ) + d\right ) \log \left (i \, \tan \left (b x + a\right ) + 1\right ) - i \, \log \left (i \, \tan \left (b x + a\right ) + 1\right )^{2}}{d} - \frac {2 i \, {\left (\log \left (i \, \tan \left (b x + a\right ) + 1\right ) \log \left (-\frac {1}{2} i \, \tan \left (b x + a\right ) + \frac {1}{2}\right ) + {\rm Li}_2\left (\frac {1}{2} i \, \tan \left (b x + a\right ) + \frac {1}{2}\right )\right )}}{d}\right )} - 8 \, {\left (b x + a\right )} \operatorname {artanh}\left (i \, d + \frac {d}{\tan \left (b x + a\right )} + 1\right )}{8 \, b} \]

input
integrate(arctanh(1+I*d+d*cot(b*x+a)),x, algorithm="maxima")
 
output
-1/8*(4*(b*x + a)*d*(log((I*d + 2)*tan(b*x + a) + d)/d - log(I*tan(b*x + a 
) + 1)/d) - d*(2*I*(log((I*d + 2)*tan(b*x + a) + d)*log(((d - 2*I)*tan(b*x 
 + a) - I*d)/(2*I*d + 2) + 1) + dilog(-((d - 2*I)*tan(b*x + a) - I*d)/(2*I 
*d + 2)))/d + 2*I*(log(1/2*(d - 2*I)*tan(b*x + a) - 1/2*I*d)*log(I*tan(b*x 
 + a) + 1) + dilog(-1/2*(d - 2*I)*tan(b*x + a) + 1/2*I*d + 1))/d - (2*I*lo 
g((I*d + 2)*tan(b*x + a) + d)*log(I*tan(b*x + a) + 1) - I*log(I*tan(b*x + 
a) + 1)^2)/d - 2*I*(log(I*tan(b*x + a) + 1)*log(-1/2*I*tan(b*x + a) + 1/2) 
 + dilog(1/2*I*tan(b*x + a) + 1/2))/d) - 8*(b*x + a)*arctanh(I*d + d/tan(b 
*x + a) + 1))/b
 
3.4.40.8 Giac [F]

\[ \int \text {arctanh}(1+i d+d \cot (a+b x)) \, dx=\int { \operatorname {artanh}\left (d \cot \left (b x + a\right ) + i \, d + 1\right ) \,d x } \]

input
integrate(arctanh(1+I*d+d*cot(b*x+a)),x, algorithm="giac")
 
output
integrate(arctanh(d*cot(b*x + a) + I*d + 1), x)
 
3.4.40.9 Mupad [F(-1)]

Timed out. \[ \int \text {arctanh}(1+i d+d \cot (a+b x)) \, dx=\int \mathrm {atanh}\left (d\,\mathrm {cot}\left (a+b\,x\right )+1+d\,1{}\mathrm {i}\right ) \,d x \]

input
int(atanh(d*1i + d*cot(a + b*x) + 1),x)
 
output
int(atanh(d*1i + d*cot(a + b*x) + 1), x)