3.1.54 \(\int x^m \text {arctanh}(\tanh (a+b x))^3 \, dx\) [54]

3.1.54.1 Optimal result
3.1.54.2 Mathematica [A] (verified)
3.1.54.3 Rubi [A] (verified)
3.1.54.4 Maple [A] (verified)
3.1.54.5 Fricas [B] (verification not implemented)
3.1.54.6 Sympy [F]
3.1.54.7 Maxima [A] (verification not implemented)
3.1.54.8 Giac [F]
3.1.54.9 Mupad [B] (verification not implemented)

3.1.54.1 Optimal result

Integrand size = 13, antiderivative size = 110 \[ \int x^m \text {arctanh}(\tanh (a+b x))^3 \, dx=-\frac {6 b^3 x^{4+m}}{(1+m) \left (24+26 m+9 m^2+m^3\right )}+\frac {6 b^2 x^{3+m} \text {arctanh}(\tanh (a+b x))}{6+11 m+6 m^2+m^3}-\frac {3 b x^{2+m} \text {arctanh}(\tanh (a+b x))^2}{2+3 m+m^2}+\frac {x^{1+m} \text {arctanh}(\tanh (a+b x))^3}{1+m} \]

output
-6*b^3*x^(4+m)/(1+m)/(m^3+9*m^2+26*m+24)+6*b^2*x^(3+m)*arctanh(tanh(b*x+a) 
)/(m^3+6*m^2+11*m+6)-3*b*x^(2+m)*arctanh(tanh(b*x+a))^2/(m^2+3*m+2)+x^(1+m 
)*arctanh(tanh(b*x+a))^3/(1+m)
 
3.1.54.2 Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.88 \[ \int x^m \text {arctanh}(\tanh (a+b x))^3 \, dx=\frac {x^{1+m} \left (-6 b^3 x^3+6 b^2 (4+m) x^2 \text {arctanh}(\tanh (a+b x))-3 b \left (12+7 m+m^2\right ) x \text {arctanh}(\tanh (a+b x))^2+\left (24+26 m+9 m^2+m^3\right ) \text {arctanh}(\tanh (a+b x))^3\right )}{(1+m) (2+m) (3+m) (4+m)} \]

input
Integrate[x^m*ArcTanh[Tanh[a + b*x]]^3,x]
 
output
(x^(1 + m)*(-6*b^3*x^3 + 6*b^2*(4 + m)*x^2*ArcTanh[Tanh[a + b*x]] - 3*b*(1 
2 + 7*m + m^2)*x*ArcTanh[Tanh[a + b*x]]^2 + (24 + 26*m + 9*m^2 + m^3)*ArcT 
anh[Tanh[a + b*x]]^3))/((1 + m)*(2 + m)*(3 + m)*(4 + m))
 
3.1.54.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.86, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {2599, 2599, 2599, 15}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^m \text {arctanh}(\tanh (a+b x))^3 \, dx\)

\(\Big \downarrow \) 2599

\(\displaystyle \frac {x^{m+1} \text {arctanh}(\tanh (a+b x))^3}{m+1}-\frac {3 b \int x^{m+1} \text {arctanh}(\tanh (a+b x))^2dx}{m+1}\)

\(\Big \downarrow \) 2599

\(\displaystyle \frac {x^{m+1} \text {arctanh}(\tanh (a+b x))^3}{m+1}-\frac {3 b \left (\frac {x^{m+2} \text {arctanh}(\tanh (a+b x))^2}{m+2}-\frac {2 b \int x^{m+2} \text {arctanh}(\tanh (a+b x))dx}{m+2}\right )}{m+1}\)

\(\Big \downarrow \) 2599

\(\displaystyle \frac {x^{m+1} \text {arctanh}(\tanh (a+b x))^3}{m+1}-\frac {3 b \left (\frac {x^{m+2} \text {arctanh}(\tanh (a+b x))^2}{m+2}-\frac {2 b \left (\frac {x^{m+3} \text {arctanh}(\tanh (a+b x))}{m+3}-\frac {b \int x^{m+3}dx}{m+3}\right )}{m+2}\right )}{m+1}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {x^{m+1} \text {arctanh}(\tanh (a+b x))^3}{m+1}-\frac {3 b \left (\frac {x^{m+2} \text {arctanh}(\tanh (a+b x))^2}{m+2}-\frac {2 b \left (\frac {x^{m+3} \text {arctanh}(\tanh (a+b x))}{m+3}-\frac {b x^{m+4}}{(m+3) (m+4)}\right )}{m+2}\right )}{m+1}\)

input
Int[x^m*ArcTanh[Tanh[a + b*x]]^3,x]
 
output
(x^(1 + m)*ArcTanh[Tanh[a + b*x]]^3)/(1 + m) - (3*b*((x^(2 + m)*ArcTanh[Ta 
nh[a + b*x]]^2)/(2 + m) - (2*b*(-((b*x^(4 + m))/((3 + m)*(4 + m))) + (x^(3 
 + m)*ArcTanh[Tanh[a + b*x]])/(3 + m)))/(2 + m)))/(1 + m)
 

3.1.54.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 2599
Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Sim 
plify[D[v, x]]}, Simp[u^(m + 1)*(v^n/(a*(m + 1))), x] - Simp[b*(n/(a*(m + 1 
)))   Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m, n} 
, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0 
] &&  !(ILtQ[m + n, -2] && (FractionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ 
[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]) || (ILt 
Q[m, 0] &&  !IntegerQ[n]))
 
3.1.54.4 Maple [A] (verified)

Time = 4.93 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.61

method result size
default \(\frac {b^{3} x^{4} {\mathrm e}^{m \ln \left (x \right )}}{4+m}+\frac {\left (a^{3}+3 a^{2} \left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x -a \right )+3 a \left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x -a \right )^{2}+\left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x -a \right )^{3}\right ) x \,{\mathrm e}^{m \ln \left (x \right )}}{1+m}+\frac {3 b \left (a^{2}+2 a \left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x -a \right )+\left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x -a \right )^{2}\right ) x^{2} {\mathrm e}^{m \ln \left (x \right )}}{2+m}+\frac {3 b^{2} \left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right ) x^{3} {\mathrm e}^{m \ln \left (x \right )}}{3+m}\) \(177\)
parallelrisch \(-\frac {-26 x \,x^{m} \operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )^{3} m -x \,x^{m} \operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )^{3} m^{3}-9 x \,x^{m} \operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )^{3} m^{2}-6 x^{3} x^{m} \operatorname {arctanh}\left (\tanh \left (b x +a \right )\right ) b^{2} m +3 x^{2} x^{m} \operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )^{2} b \,m^{2}+21 x^{2} x^{m} \operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )^{2} b m -24 \operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )^{3} x^{m} x +6 b^{3} x^{m} x^{4}+36 b \operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )^{2} x^{m} x^{2}-24 b^{2} \operatorname {arctanh}\left (\tanh \left (b x +a \right )\right ) x^{m} x^{3}}{\left (m^{3}+6 m^{2}+11 m +6\right ) \left (4+m \right )}\) \(197\)
risch \(\text {Expression too large to display}\) \(27266\)

input
int(x^m*arctanh(tanh(b*x+a))^3,x,method=_RETURNVERBOSE)
 
output
b^3/(4+m)*x^4*exp(m*ln(x))+(a^3+3*a^2*(arctanh(tanh(b*x+a))-b*x-a)+3*a*(ar 
ctanh(tanh(b*x+a))-b*x-a)^2+(arctanh(tanh(b*x+a))-b*x-a)^3)/(1+m)*x*exp(m* 
ln(x))+3*b*(a^2+2*a*(arctanh(tanh(b*x+a))-b*x-a)+(arctanh(tanh(b*x+a))-b*x 
-a)^2)/(2+m)*x^2*exp(m*ln(x))+3*b^2*(arctanh(tanh(b*x+a))-b*x)/(3+m)*x^3*e 
xp(m*ln(x))
 
3.1.54.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 300 vs. \(2 (110) = 220\).

Time = 0.25 (sec) , antiderivative size = 300, normalized size of antiderivative = 2.73 \[ \int x^m \text {arctanh}(\tanh (a+b x))^3 \, dx=\frac {{\left ({\left (b^{3} m^{3} + 6 \, b^{3} m^{2} + 11 \, b^{3} m + 6 \, b^{3}\right )} x^{4} + 3 \, {\left (a b^{2} m^{3} + 7 \, a b^{2} m^{2} + 14 \, a b^{2} m + 8 \, a b^{2}\right )} x^{3} + 3 \, {\left (a^{2} b m^{3} + 8 \, a^{2} b m^{2} + 19 \, a^{2} b m + 12 \, a^{2} b\right )} x^{2} + {\left (a^{3} m^{3} + 9 \, a^{3} m^{2} + 26 \, a^{3} m + 24 \, a^{3}\right )} x\right )} \cosh \left (m \log \left (x\right )\right ) + {\left ({\left (b^{3} m^{3} + 6 \, b^{3} m^{2} + 11 \, b^{3} m + 6 \, b^{3}\right )} x^{4} + 3 \, {\left (a b^{2} m^{3} + 7 \, a b^{2} m^{2} + 14 \, a b^{2} m + 8 \, a b^{2}\right )} x^{3} + 3 \, {\left (a^{2} b m^{3} + 8 \, a^{2} b m^{2} + 19 \, a^{2} b m + 12 \, a^{2} b\right )} x^{2} + {\left (a^{3} m^{3} + 9 \, a^{3} m^{2} + 26 \, a^{3} m + 24 \, a^{3}\right )} x\right )} \sinh \left (m \log \left (x\right )\right )}{m^{4} + 10 \, m^{3} + 35 \, m^{2} + 50 \, m + 24} \]

input
integrate(x^m*arctanh(tanh(b*x+a))^3,x, algorithm="fricas")
 
output
(((b^3*m^3 + 6*b^3*m^2 + 11*b^3*m + 6*b^3)*x^4 + 3*(a*b^2*m^3 + 7*a*b^2*m^ 
2 + 14*a*b^2*m + 8*a*b^2)*x^3 + 3*(a^2*b*m^3 + 8*a^2*b*m^2 + 19*a^2*b*m + 
12*a^2*b)*x^2 + (a^3*m^3 + 9*a^3*m^2 + 26*a^3*m + 24*a^3)*x)*cosh(m*log(x) 
) + ((b^3*m^3 + 6*b^3*m^2 + 11*b^3*m + 6*b^3)*x^4 + 3*(a*b^2*m^3 + 7*a*b^2 
*m^2 + 14*a*b^2*m + 8*a*b^2)*x^3 + 3*(a^2*b*m^3 + 8*a^2*b*m^2 + 19*a^2*b*m 
 + 12*a^2*b)*x^2 + (a^3*m^3 + 9*a^3*m^2 + 26*a^3*m + 24*a^3)*x)*sinh(m*log 
(x)))/(m^4 + 10*m^3 + 35*m^2 + 50*m + 24)
 
3.1.54.6 Sympy [F]

\[ \int x^m \text {arctanh}(\tanh (a+b x))^3 \, dx=\begin {cases} b^{3} \log {\left (x \right )} - \frac {b^{2} \operatorname {atanh}{\left (\tanh {\left (a + b x \right )} \right )}}{x} - \frac {b \operatorname {atanh}^{2}{\left (\tanh {\left (a + b x \right )} \right )}}{2 x^{2}} - \frac {\operatorname {atanh}^{3}{\left (\tanh {\left (a + b x \right )} \right )}}{3 x^{3}} & \text {for}\: m = -4 \\\int \frac {\operatorname {atanh}^{3}{\left (\tanh {\left (a + b x \right )} \right )}}{x^{3}}\, dx & \text {for}\: m = -3 \\\int \frac {\operatorname {atanh}^{3}{\left (\tanh {\left (a + b x \right )} \right )}}{x^{2}}\, dx & \text {for}\: m = -2 \\\int \frac {\operatorname {atanh}^{3}{\left (\tanh {\left (a + b x \right )} \right )}}{x}\, dx & \text {for}\: m = -1 \\- \frac {6 b^{3} x^{4} x^{m}}{m^{4} + 10 m^{3} + 35 m^{2} + 50 m + 24} + \frac {6 b^{2} m x^{3} x^{m} \operatorname {atanh}{\left (\tanh {\left (a + b x \right )} \right )}}{m^{4} + 10 m^{3} + 35 m^{2} + 50 m + 24} + \frac {24 b^{2} x^{3} x^{m} \operatorname {atanh}{\left (\tanh {\left (a + b x \right )} \right )}}{m^{4} + 10 m^{3} + 35 m^{2} + 50 m + 24} - \frac {3 b m^{2} x^{2} x^{m} \operatorname {atanh}^{2}{\left (\tanh {\left (a + b x \right )} \right )}}{m^{4} + 10 m^{3} + 35 m^{2} + 50 m + 24} - \frac {21 b m x^{2} x^{m} \operatorname {atanh}^{2}{\left (\tanh {\left (a + b x \right )} \right )}}{m^{4} + 10 m^{3} + 35 m^{2} + 50 m + 24} - \frac {36 b x^{2} x^{m} \operatorname {atanh}^{2}{\left (\tanh {\left (a + b x \right )} \right )}}{m^{4} + 10 m^{3} + 35 m^{2} + 50 m + 24} + \frac {m^{3} x x^{m} \operatorname {atanh}^{3}{\left (\tanh {\left (a + b x \right )} \right )}}{m^{4} + 10 m^{3} + 35 m^{2} + 50 m + 24} + \frac {9 m^{2} x x^{m} \operatorname {atanh}^{3}{\left (\tanh {\left (a + b x \right )} \right )}}{m^{4} + 10 m^{3} + 35 m^{2} + 50 m + 24} + \frac {26 m x x^{m} \operatorname {atanh}^{3}{\left (\tanh {\left (a + b x \right )} \right )}}{m^{4} + 10 m^{3} + 35 m^{2} + 50 m + 24} + \frac {24 x x^{m} \operatorname {atanh}^{3}{\left (\tanh {\left (a + b x \right )} \right )}}{m^{4} + 10 m^{3} + 35 m^{2} + 50 m + 24} & \text {otherwise} \end {cases} \]

input
integrate(x**m*atanh(tanh(b*x+a))**3,x)
 
output
Piecewise((b**3*log(x) - b**2*atanh(tanh(a + b*x))/x - b*atanh(tanh(a + b* 
x))**2/(2*x**2) - atanh(tanh(a + b*x))**3/(3*x**3), Eq(m, -4)), (Integral( 
atanh(tanh(a + b*x))**3/x**3, x), Eq(m, -3)), (Integral(atanh(tanh(a + b*x 
))**3/x**2, x), Eq(m, -2)), (Integral(atanh(tanh(a + b*x))**3/x, x), Eq(m, 
 -1)), (-6*b**3*x**4*x**m/(m**4 + 10*m**3 + 35*m**2 + 50*m + 24) + 6*b**2* 
m*x**3*x**m*atanh(tanh(a + b*x))/(m**4 + 10*m**3 + 35*m**2 + 50*m + 24) + 
24*b**2*x**3*x**m*atanh(tanh(a + b*x))/(m**4 + 10*m**3 + 35*m**2 + 50*m + 
24) - 3*b*m**2*x**2*x**m*atanh(tanh(a + b*x))**2/(m**4 + 10*m**3 + 35*m**2 
 + 50*m + 24) - 21*b*m*x**2*x**m*atanh(tanh(a + b*x))**2/(m**4 + 10*m**3 + 
 35*m**2 + 50*m + 24) - 36*b*x**2*x**m*atanh(tanh(a + b*x))**2/(m**4 + 10* 
m**3 + 35*m**2 + 50*m + 24) + m**3*x*x**m*atanh(tanh(a + b*x))**3/(m**4 + 
10*m**3 + 35*m**2 + 50*m + 24) + 9*m**2*x*x**m*atanh(tanh(a + b*x))**3/(m* 
*4 + 10*m**3 + 35*m**2 + 50*m + 24) + 26*m*x*x**m*atanh(tanh(a + b*x))**3/ 
(m**4 + 10*m**3 + 35*m**2 + 50*m + 24) + 24*x*x**m*atanh(tanh(a + b*x))**3 
/(m**4 + 10*m**3 + 35*m**2 + 50*m + 24), True))
 
3.1.54.7 Maxima [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.99 \[ \int x^m \text {arctanh}(\tanh (a+b x))^3 \, dx=-\frac {3 \, b x^{2} x^{m} \operatorname {artanh}\left (\tanh \left (b x + a\right )\right )^{2}}{{\left (m + 2\right )} {\left (m + 1\right )}} + \frac {x^{m + 1} \operatorname {artanh}\left (\tanh \left (b x + a\right )\right )^{3}}{m + 1} - \frac {6 \, {\left (\frac {b^{2} x^{4} x^{m}}{{\left (m + 4\right )} {\left (m + 3\right )} {\left (m + 2\right )}} - \frac {b x^{3} x^{m} \operatorname {artanh}\left (\tanh \left (b x + a\right )\right )}{{\left (m + 3\right )} {\left (m + 2\right )}}\right )} b}{m + 1} \]

input
integrate(x^m*arctanh(tanh(b*x+a))^3,x, algorithm="maxima")
 
output
-3*b*x^2*x^m*arctanh(tanh(b*x + a))^2/((m + 2)*(m + 1)) + x^(m + 1)*arctan 
h(tanh(b*x + a))^3/(m + 1) - 6*(b^2*x^4*x^m/((m + 4)*(m + 3)*(m + 2)) - b* 
x^3*x^m*arctanh(tanh(b*x + a))/((m + 3)*(m + 2)))*b/(m + 1)
 
3.1.54.8 Giac [F]

\[ \int x^m \text {arctanh}(\tanh (a+b x))^3 \, dx=\int { x^{m} \operatorname {artanh}\left (\tanh \left (b x + a\right )\right )^{3} \,d x } \]

input
integrate(x^m*arctanh(tanh(b*x+a))^3,x, algorithm="giac")
 
output
integrate(x^m*arctanh(tanh(b*x + a))^3, x)
 
3.1.54.9 Mupad [B] (verification not implemented)

Time = 3.79 (sec) , antiderivative size = 332, normalized size of antiderivative = 3.02 \[ \int x^m \text {arctanh}(\tanh (a+b x))^3 \, dx=\frac {8\,b^3\,x^m\,x^4\,\left (m^3+6\,m^2+11\,m+6\right )}{8\,m^4+80\,m^3+280\,m^2+400\,m+192}-\frac {x\,x^m\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^3\,\left (m^3+9\,m^2+26\,m+24\right )}{8\,m^4+80\,m^3+280\,m^2+400\,m+192}-\frac {12\,b^2\,x^m\,x^3\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )\,\left (m^3+7\,m^2+14\,m+8\right )}{8\,m^4+80\,m^3+280\,m^2+400\,m+192}+\frac {6\,b\,x^m\,x^2\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2\,\left (m^3+8\,m^2+19\,m+12\right )}{8\,m^4+80\,m^3+280\,m^2+400\,m+192} \]

input
int(x^m*atanh(tanh(a + b*x))^3,x)
 
output
(8*b^3*x^m*x^4*(11*m + 6*m^2 + m^3 + 6))/(400*m + 280*m^2 + 80*m^3 + 8*m^4 
 + 192) - (x*x^m*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2 
*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^3*(26*m + 9*m^2 + m^3 + 24))/(4 
00*m + 280*m^2 + 80*m^3 + 8*m^4 + 192) - (12*b^2*x^m*x^3*(log(2/(exp(2*a)* 
exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) 
+ 2*b*x)*(14*m + 7*m^2 + m^3 + 8))/(400*m + 280*m^2 + 80*m^3 + 8*m^4 + 192 
) + (6*b*x^m*x^2*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2 
*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^2*(19*m + 8*m^2 + m^3 + 12))/(4 
00*m + 280*m^2 + 80*m^3 + 8*m^4 + 192)