3.2.74 \(\int \frac {1}{x^3 \coth ^{-1}(\tanh (a+b x))^2} \, dx\) [174]

3.2.74.1 Optimal result
3.2.74.2 Mathematica [A] (verified)
3.2.74.3 Rubi [A] (verified)
3.2.74.4 Maple [F(-1)]
3.2.74.5 Fricas [C] (verification not implemented)
3.2.74.6 Sympy [F]
3.2.74.7 Maxima [C] (verification not implemented)
3.2.74.8 Giac [C] (verification not implemented)
3.2.74.9 Mupad [B] (verification not implemented)

3.2.74.1 Optimal result

Integrand size = 13, antiderivative size = 143 \[ \int \frac {1}{x^3 \coth ^{-1}(\tanh (a+b x))^2} \, dx=-\frac {3 b^2}{\left (b x-\coth ^{-1}(\tanh (a+b x))\right )^3 \coth ^{-1}(\tanh (a+b x))}+\frac {3 b}{2 x \left (b x-\coth ^{-1}(\tanh (a+b x))\right )^2 \coth ^{-1}(\tanh (a+b x))}+\frac {1}{2 x^2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}+\frac {3 b^2 \log (x)}{\left (b x-\coth ^{-1}(\tanh (a+b x))\right )^4}-\frac {3 b^2 \log \left (\coth ^{-1}(\tanh (a+b x))\right )}{\left (b x-\coth ^{-1}(\tanh (a+b x))\right )^4} \]

output
-3*b^2/(b*x-arccoth(tanh(b*x+a)))^3/arccoth(tanh(b*x+a))+3/2*b/x/(b*x-arcc 
oth(tanh(b*x+a)))^2/arccoth(tanh(b*x+a))+1/2/x^2/(b*x-arccoth(tanh(b*x+a)) 
)/arccoth(tanh(b*x+a))+3*b^2*ln(x)/(b*x-arccoth(tanh(b*x+a)))^4-3*b^2*ln(a 
rccoth(tanh(b*x+a)))/(b*x-arccoth(tanh(b*x+a)))^4
 
3.2.74.2 Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.64 \[ \int \frac {1}{x^3 \coth ^{-1}(\tanh (a+b x))^2} \, dx=-\frac {2 b^3 x^3-6 b x \coth ^{-1}(\tanh (a+b x))^2+\coth ^{-1}(\tanh (a+b x))^3-3 b^2 x^2 \coth ^{-1}(\tanh (a+b x)) \left (-1+2 \log (x)-2 \log \left (\coth ^{-1}(\tanh (a+b x))\right )\right )}{2 x^2 \coth ^{-1}(\tanh (a+b x)) \left (-b x+\coth ^{-1}(\tanh (a+b x))\right )^4} \]

input
Integrate[1/(x^3*ArcCoth[Tanh[a + b*x]]^2),x]
 
output
-1/2*(2*b^3*x^3 - 6*b*x*ArcCoth[Tanh[a + b*x]]^2 + ArcCoth[Tanh[a + b*x]]^ 
3 - 3*b^2*x^2*ArcCoth[Tanh[a + b*x]]*(-1 + 2*Log[x] - 2*Log[ArcCoth[Tanh[a 
 + b*x]]]))/(x^2*ArcCoth[Tanh[a + b*x]]*(-(b*x) + ArcCoth[Tanh[a + b*x]])^ 
4)
 
3.2.74.3 Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.31, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.538, Rules used = {2602, 2602, 2594, 2591, 14, 2588, 14}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^3 \coth ^{-1}(\tanh (a+b x))^2} \, dx\)

\(\Big \downarrow \) 2602

\(\displaystyle \frac {3 b \int \frac {1}{x^2 \coth ^{-1}(\tanh (a+b x))^2}dx}{2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right )}+\frac {1}{2 x^2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}\)

\(\Big \downarrow \) 2602

\(\displaystyle \frac {3 b \left (\frac {2 b \int \frac {1}{x \coth ^{-1}(\tanh (a+b x))^2}dx}{b x-\coth ^{-1}(\tanh (a+b x))}+\frac {1}{x \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}\right )}{2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right )}+\frac {1}{2 x^2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}\)

\(\Big \downarrow \) 2594

\(\displaystyle \frac {3 b \left (\frac {2 b \left (-\frac {\int \frac {1}{x \coth ^{-1}(\tanh (a+b x))}dx}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {1}{\left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}\right )}{b x-\coth ^{-1}(\tanh (a+b x))}+\frac {1}{x \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}\right )}{2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right )}+\frac {1}{2 x^2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}\)

\(\Big \downarrow \) 2591

\(\displaystyle \frac {3 b \left (\frac {2 b \left (-\frac {\frac {b \int \frac {1}{\coth ^{-1}(\tanh (a+b x))}dx}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {\int \frac {1}{x}dx}{b x-\coth ^{-1}(\tanh (a+b x))}}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {1}{\left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}\right )}{b x-\coth ^{-1}(\tanh (a+b x))}+\frac {1}{x \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}\right )}{2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right )}+\frac {1}{2 x^2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}\)

\(\Big \downarrow \) 14

\(\displaystyle \frac {3 b \left (\frac {2 b \left (-\frac {\frac {b \int \frac {1}{\coth ^{-1}(\tanh (a+b x))}dx}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {\log (x)}{b x-\coth ^{-1}(\tanh (a+b x))}}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {1}{\left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}\right )}{b x-\coth ^{-1}(\tanh (a+b x))}+\frac {1}{x \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}\right )}{2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right )}+\frac {1}{2 x^2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}\)

\(\Big \downarrow \) 2588

\(\displaystyle \frac {3 b \left (\frac {2 b \left (-\frac {\frac {\int \frac {1}{\coth ^{-1}(\tanh (a+b x))}d\coth ^{-1}(\tanh (a+b x))}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {\log (x)}{b x-\coth ^{-1}(\tanh (a+b x))}}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {1}{\left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}\right )}{b x-\coth ^{-1}(\tanh (a+b x))}+\frac {1}{x \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}\right )}{2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right )}+\frac {1}{2 x^2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}\)

\(\Big \downarrow \) 14

\(\displaystyle \frac {1}{2 x^2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}+\frac {3 b \left (\frac {1}{x \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}+\frac {2 b \left (-\frac {1}{\left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}-\frac {\frac {\log \left (\coth ^{-1}(\tanh (a+b x))\right )}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {\log (x)}{b x-\coth ^{-1}(\tanh (a+b x))}}{b x-\coth ^{-1}(\tanh (a+b x))}\right )}{b x-\coth ^{-1}(\tanh (a+b x))}\right )}{2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right )}\)

input
Int[1/(x^3*ArcCoth[Tanh[a + b*x]]^2),x]
 
output
1/(2*x^2*(b*x - ArcCoth[Tanh[a + b*x]])*ArcCoth[Tanh[a + b*x]]) + (3*b*(1/ 
(x*(b*x - ArcCoth[Tanh[a + b*x]])*ArcCoth[Tanh[a + b*x]]) + (2*b*(-(1/((b* 
x - ArcCoth[Tanh[a + b*x]])*ArcCoth[Tanh[a + b*x]])) - (-(Log[x]/(b*x - Ar 
cCoth[Tanh[a + b*x]])) + Log[ArcCoth[Tanh[a + b*x]]]/(b*x - ArcCoth[Tanh[a 
 + b*x]]))/(b*x - ArcCoth[Tanh[a + b*x]])))/(b*x - ArcCoth[Tanh[a + b*x]]) 
))/(2*(b*x - ArcCoth[Tanh[a + b*x]]))
 

3.2.74.3.1 Defintions of rubi rules used

rule 14
Int[(a_.)/(x_), x_Symbol] :> Simp[a*Log[x], x] /; FreeQ[a, x]
 

rule 2588
Int[(u_)^(m_.), x_Symbol] :> With[{c = Simplify[D[u, x]]}, Simp[1/c   Subst 
[Int[x^m, x], x, u], x]] /; FreeQ[m, x] && PiecewiseLinearQ[u, x]
 

rule 2591
Int[1/((u_)*(v_)), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D 
[v, x]]}, Simp[b/(b*u - a*v)   Int[1/v, x], x] - Simp[a/(b*u - a*v)   Int[1 
/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x]
 

rule 2594
Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[ 
D[v, x]]}, Simp[v^(n + 1)/((n + 1)*(b*u - a*v)), x] - Simp[a*((n + 1)/((n + 
 1)*(b*u - a*v)))   Int[v^(n + 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; Piecew 
iseLinearQ[u, v, x] && LtQ[n, -1]
 

rule 2602
Int[(u_)^(m_)*(v_)^(n_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simp 
lify[D[v, x]]}, Simp[(-u^(m + 1))*(v^(n + 1)/((m + 1)*(b*u - a*v))), x] + S 
imp[b*((m + n + 2)/((m + 1)*(b*u - a*v)))   Int[u^(m + 1)*v^n, x], x] /; Ne 
Q[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x] && NeQ[m + n + 2, 0] && LtQ[m 
, -1]
 
3.2.74.4 Maple [F(-1)]

Timed out.

\[\int \frac {1}{x^{3} \operatorname {arccoth}\left (\tanh \left (b x +a \right )\right )^{2}}d x\]

input
int(1/x^3/arccoth(tanh(b*x+a))^2,x)
 
output
int(1/x^3/arccoth(tanh(b*x+a))^2,x)
 
3.2.74.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.27 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.71 \[ \int \frac {1}{x^3 \coth ^{-1}(\tanh (a+b x))^2} \, dx=\frac {2 \, {\left (48 \, a b^{2} x^{2} + 24 \, a^{2} b x + i \, \pi ^{3} - 6 \, \pi ^{2} {\left (b x - a\right )} - 8 \, a^{3} + 12 i \, \pi {\left (2 \, b^{2} x^{2} + 2 \, a b x - a^{2}\right )} - 24 \, {\left (2 \, b^{3} x^{3} + i \, \pi b^{2} x^{2} + 2 \, a b^{2} x^{2}\right )} \log \left (i \, \pi + 2 \, b x + 2 \, a\right ) + 24 \, {\left (2 \, b^{3} x^{3} + i \, \pi b^{2} x^{2} + 2 \, a b^{2} x^{2}\right )} \log \left (x\right )\right )}}{32 \, a^{4} b x^{3} + i \, \pi ^{5} x^{2} + 32 \, a^{5} x^{2} + 2 \, \pi ^{4} {\left (b x^{3} + 5 \, a x^{2}\right )} - 8 i \, \pi ^{3} {\left (2 \, a b x^{3} + 5 \, a^{2} x^{2}\right )} - 16 \, \pi ^{2} {\left (3 \, a^{2} b x^{3} + 5 \, a^{3} x^{2}\right )} + 16 i \, \pi {\left (4 \, a^{3} b x^{3} + 5 \, a^{4} x^{2}\right )}} \]

input
integrate(1/x^3/arccoth(tanh(b*x+a))^2,x, algorithm="fricas")
 
output
2*(48*a*b^2*x^2 + 24*a^2*b*x + I*pi^3 - 6*pi^2*(b*x - a) - 8*a^3 + 12*I*pi 
*(2*b^2*x^2 + 2*a*b*x - a^2) - 24*(2*b^3*x^3 + I*pi*b^2*x^2 + 2*a*b^2*x^2) 
*log(I*pi + 2*b*x + 2*a) + 24*(2*b^3*x^3 + I*pi*b^2*x^2 + 2*a*b^2*x^2)*log 
(x))/(32*a^4*b*x^3 + I*pi^5*x^2 + 32*a^5*x^2 + 2*pi^4*(b*x^3 + 5*a*x^2) - 
8*I*pi^3*(2*a*b*x^3 + 5*a^2*x^2) - 16*pi^2*(3*a^2*b*x^3 + 5*a^3*x^2) + 16* 
I*pi*(4*a^3*b*x^3 + 5*a^4*x^2))
 
3.2.74.6 Sympy [F]

\[ \int \frac {1}{x^3 \coth ^{-1}(\tanh (a+b x))^2} \, dx=\int \frac {1}{x^{3} \operatorname {acoth}^{2}{\left (\tanh {\left (a + b x \right )} \right )}}\, dx \]

input
integrate(1/x**3/acoth(tanh(b*x+a))**2,x)
 
output
Integral(1/(x**3*acoth(tanh(a + b*x))**2), x)
 
3.2.74.7 Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.53 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.33 \[ \int \frac {1}{x^3 \coth ^{-1}(\tanh (a+b x))^2} \, dx=-\frac {48 \, b^{2} \log \left (-i \, \pi + 2 \, b x + 2 \, a\right )}{\pi ^{4} + 8 i \, \pi ^{3} a - 24 \, \pi ^{2} a^{2} - 32 i \, \pi a^{3} + 16 \, a^{4}} + \frac {48 \, b^{2} \log \left (x\right )}{\pi ^{4} + 8 i \, \pi ^{3} a - 24 \, \pi ^{2} a^{2} - 32 i \, \pi a^{3} + 16 \, a^{4}} + \frac {2 \, {\left (24 \, b^{2} x^{2} + \pi ^{2} + 4 i \, \pi a - 4 \, a^{2} - 6 \, {\left (i \, \pi b - 2 \, a b\right )} x\right )}}{2 \, {\left (i \, \pi ^{3} b - 6 \, \pi ^{2} a b - 12 i \, \pi a^{2} b + 8 \, a^{3} b\right )} x^{3} + {\left (\pi ^{4} + 8 i \, \pi ^{3} a - 24 \, \pi ^{2} a^{2} - 32 i \, \pi a^{3} + 16 \, a^{4}\right )} x^{2}} \]

input
integrate(1/x^3/arccoth(tanh(b*x+a))^2,x, algorithm="maxima")
 
output
-48*b^2*log(-I*pi + 2*b*x + 2*a)/(pi^4 + 8*I*pi^3*a - 24*pi^2*a^2 - 32*I*p 
i*a^3 + 16*a^4) + 48*b^2*log(x)/(pi^4 + 8*I*pi^3*a - 24*pi^2*a^2 - 32*I*pi 
*a^3 + 16*a^4) + 2*(24*b^2*x^2 + pi^2 + 4*I*pi*a - 4*a^2 - 6*(I*pi*b - 2*a 
*b)*x)/(2*(I*pi^3*b - 6*pi^2*a*b - 12*I*pi*a^2*b + 8*a^3*b)*x^3 + (pi^4 + 
8*I*pi^3*a - 24*pi^2*a^2 - 32*I*pi*a^3 + 16*a^4)*x^2)
 
3.2.74.8 Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.29 (sec) , antiderivative size = 203, normalized size of antiderivative = 1.42 \[ \int \frac {1}{x^3 \coth ^{-1}(\tanh (a+b x))^2} \, dx=-\frac {48 \, b^{2} \log \left (i \, \pi + 2 \, b x + 2 \, a\right )}{\pi ^{4} - 8 i \, \pi ^{3} a - 24 \, \pi ^{2} a^{2} + 32 i \, \pi a^{3} + 16 \, a^{4}} + \frac {48 \, b^{2} \log \left (x\right )}{\pi ^{4} - 8 i \, \pi ^{3} a - 24 \, \pi ^{2} a^{2} + 32 i \, \pi a^{3} + 16 \, a^{4}} + \frac {16 \, b^{2}}{-2 i \, \pi ^{3} b x - 12 \, \pi ^{2} a b x + 24 i \, \pi a^{2} b x + 16 \, a^{3} b x + \pi ^{4} - 8 i \, \pi ^{3} a - 24 \, \pi ^{2} a^{2} + 32 i \, \pi a^{3} + 16 \, a^{4}} - \frac {4 \, {\left (i \, \pi - 8 \, b x + 2 \, a\right )}}{-2 i \, \pi ^{3} x^{2} - 12 \, \pi ^{2} a x^{2} + 24 i \, \pi a^{2} x^{2} + 16 \, a^{3} x^{2}} \]

input
integrate(1/x^3/arccoth(tanh(b*x+a))^2,x, algorithm="giac")
 
output
-48*b^2*log(I*pi + 2*b*x + 2*a)/(pi^4 - 8*I*pi^3*a - 24*pi^2*a^2 + 32*I*pi 
*a^3 + 16*a^4) + 48*b^2*log(x)/(pi^4 - 8*I*pi^3*a - 24*pi^2*a^2 + 32*I*pi* 
a^3 + 16*a^4) + 16*b^2/(-2*I*pi^3*b*x - 12*pi^2*a*b*x + 24*I*pi*a^2*b*x + 
16*a^3*b*x + pi^4 - 8*I*pi^3*a - 24*pi^2*a^2 + 32*I*pi*a^3 + 16*a^4) - 4*( 
I*pi - 8*b*x + 2*a)/(-2*I*pi^3*x^2 - 12*pi^2*a*x^2 + 24*I*pi*a^2*x^2 + 16* 
a^3*x^2)
 
3.2.74.9 Mupad [B] (verification not implemented)

Time = 7.85 (sec) , antiderivative size = 689, normalized size of antiderivative = 4.82 \[ \int \frac {1}{x^3 \coth ^{-1}(\tanh (a+b x))^2} \, dx=\frac {2\,{\ln \left (-\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )}^3-2\,{\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )}^3-6\,\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )\,{\ln \left (-\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )}^2+6\,{\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )}^2\,\ln \left (-\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )-32\,b^3\,x^3+24\,b\,x\,{\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )}^2+24\,b\,x\,{\ln \left (-\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )}^2-24\,b^2\,x^2\,\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )+24\,b^2\,x^2\,\ln \left (-\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )-b^2\,x^2\,\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )\,\mathrm {atan}\left (\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )\,1{}\mathrm {i}-\ln \left (-\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )\,1{}\mathrm {i}+b\,x\,2{}\mathrm {i}}{\ln \left (-\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )+2\,b\,x}\right )\,96{}\mathrm {i}-48\,b\,x\,\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )\,\ln \left (-\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )+b^2\,x^2\,\ln \left (-\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )\,\mathrm {atan}\left (\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )\,1{}\mathrm {i}-\ln \left (-\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )\,1{}\mathrm {i}+b\,x\,2{}\mathrm {i}}{\ln \left (-\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )+2\,b\,x}\right )\,96{}\mathrm {i}}{x^2\,\left (\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )-\ln \left (-\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )\right )\,{\left (\ln \left (-\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )-\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )+2\,b\,x\right )}^4} \]

input
int(1/(x^3*acoth(tanh(a + b*x))^2),x)
 
output
(2*log(-1/(exp(2*a)*exp(2*b*x) - 1))^3 - 2*log((exp(2*a)*exp(2*b*x))/(exp( 
2*a)*exp(2*b*x) - 1))^3 - 6*log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) 
 - 1))*log(-1/(exp(2*a)*exp(2*b*x) - 1))^2 + 6*log((exp(2*a)*exp(2*b*x))/( 
exp(2*a)*exp(2*b*x) - 1))^2*log(-1/(exp(2*a)*exp(2*b*x) - 1)) - 32*b^3*x^3 
 + 24*b*x*log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) - 1))^2 + 24*b*x* 
log(-1/(exp(2*a)*exp(2*b*x) - 1))^2 - 24*b^2*x^2*log((exp(2*a)*exp(2*b*x)) 
/(exp(2*a)*exp(2*b*x) - 1)) + 24*b^2*x^2*log(-1/(exp(2*a)*exp(2*b*x) - 1)) 
 - b^2*x^2*log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) - 1))*atan((log( 
(2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) - 1))*1i - log(-2/(exp(2*a)*e 
xp(2*b*x) - 1))*1i + b*x*2i)/(log(-2/(exp(2*a)*exp(2*b*x) - 1)) - log((2*e 
xp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) - 1)) + 2*b*x))*96i - 48*b*x*log( 
(exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) - 1))*log(-1/(exp(2*a)*exp(2*b* 
x) - 1)) + b^2*x^2*log(-1/(exp(2*a)*exp(2*b*x) - 1))*atan((log((2*exp(2*a) 
*exp(2*b*x))/(exp(2*a)*exp(2*b*x) - 1))*1i - log(-2/(exp(2*a)*exp(2*b*x) - 
 1))*1i + b*x*2i)/(log(-2/(exp(2*a)*exp(2*b*x) - 1)) - log((2*exp(2*a)*exp 
(2*b*x))/(exp(2*a)*exp(2*b*x) - 1)) + 2*b*x))*96i)/(x^2*(log((exp(2*a)*exp 
(2*b*x))/(exp(2*a)*exp(2*b*x) - 1)) - log(-1/(exp(2*a)*exp(2*b*x) - 1)))*( 
log(-1/(exp(2*a)*exp(2*b*x) - 1)) - log((exp(2*a)*exp(2*b*x))/(exp(2*a)*ex 
p(2*b*x) - 1)) + 2*b*x)^4)