3.2.81 \(\int \frac {1}{x \coth ^{-1}(\tanh (a+b x))^3} \, dx\) [181]

3.2.81.1 Optimal result
3.2.81.2 Mathematica [A] (verified)
3.2.81.3 Rubi [A] (verified)
3.2.81.4 Maple [C] (warning: unable to verify)
3.2.81.5 Fricas [C] (verification not implemented)
3.2.81.6 Sympy [F]
3.2.81.7 Maxima [C] (verification not implemented)
3.2.81.8 Giac [C] (verification not implemented)
3.2.81.9 Mupad [B] (verification not implemented)

3.2.81.1 Optimal result

Integrand size = 13, antiderivative size = 97 \[ \int \frac {1}{x \coth ^{-1}(\tanh (a+b x))^3} \, dx=-\frac {1}{2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))^2}+\frac {1}{\left (b x-\coth ^{-1}(\tanh (a+b x))\right )^2 \coth ^{-1}(\tanh (a+b x))}-\frac {\log (x)}{\left (b x-\coth ^{-1}(\tanh (a+b x))\right )^3}+\frac {\log \left (\coth ^{-1}(\tanh (a+b x))\right )}{\left (b x-\coth ^{-1}(\tanh (a+b x))\right )^3} \]

output
-1/2/(b*x-arccoth(tanh(b*x+a)))/arccoth(tanh(b*x+a))^2+1/(b*x-arccoth(tanh 
(b*x+a)))^2/arccoth(tanh(b*x+a))-ln(x)/(b*x-arccoth(tanh(b*x+a)))^3+ln(arc 
coth(tanh(b*x+a)))/(b*x-arccoth(tanh(b*x+a)))^3
 
3.2.81.2 Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.76 \[ \int \frac {1}{x \coth ^{-1}(\tanh (a+b x))^3} \, dx=\frac {b^2 x^2-4 b x \coth ^{-1}(\tanh (a+b x))+\coth ^{-1}(\tanh (a+b x))^2 \left (3+2 \log (b x)-2 \log \left (\coth ^{-1}(\tanh (a+b x))\right )\right )}{2 \coth ^{-1}(\tanh (a+b x))^2 \left (-b x+\coth ^{-1}(\tanh (a+b x))\right )^3} \]

input
Integrate[1/(x*ArcCoth[Tanh[a + b*x]]^3),x]
 
output
(b^2*x^2 - 4*b*x*ArcCoth[Tanh[a + b*x]] + ArcCoth[Tanh[a + b*x]]^2*(3 + 2* 
Log[b*x] - 2*Log[ArcCoth[Tanh[a + b*x]]]))/(2*ArcCoth[Tanh[a + b*x]]^2*(-( 
b*x) + ArcCoth[Tanh[a + b*x]])^3)
 
3.2.81.3 Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.38, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {2594, 2594, 2591, 14, 2588, 14}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \coth ^{-1}(\tanh (a+b x))^3} \, dx\)

\(\Big \downarrow \) 2594

\(\displaystyle -\frac {\int \frac {1}{x \coth ^{-1}(\tanh (a+b x))^2}dx}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {1}{2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))^2}\)

\(\Big \downarrow \) 2594

\(\displaystyle -\frac {-\frac {\int \frac {1}{x \coth ^{-1}(\tanh (a+b x))}dx}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {1}{\left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {1}{2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))^2}\)

\(\Big \downarrow \) 2591

\(\displaystyle -\frac {-\frac {\frac {b \int \frac {1}{\coth ^{-1}(\tanh (a+b x))}dx}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {\int \frac {1}{x}dx}{b x-\coth ^{-1}(\tanh (a+b x))}}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {1}{\left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {1}{2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))^2}\)

\(\Big \downarrow \) 14

\(\displaystyle -\frac {-\frac {\frac {b \int \frac {1}{\coth ^{-1}(\tanh (a+b x))}dx}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {\log (x)}{b x-\coth ^{-1}(\tanh (a+b x))}}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {1}{\left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {1}{2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))^2}\)

\(\Big \downarrow \) 2588

\(\displaystyle -\frac {-\frac {\frac {\int \frac {1}{\coth ^{-1}(\tanh (a+b x))}d\coth ^{-1}(\tanh (a+b x))}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {\log (x)}{b x-\coth ^{-1}(\tanh (a+b x))}}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {1}{\left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {1}{2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))^2}\)

\(\Big \downarrow \) 14

\(\displaystyle -\frac {1}{2 \left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))^2}-\frac {-\frac {1}{\left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \coth ^{-1}(\tanh (a+b x))}-\frac {\frac {\log \left (\coth ^{-1}(\tanh (a+b x))\right )}{b x-\coth ^{-1}(\tanh (a+b x))}-\frac {\log (x)}{b x-\coth ^{-1}(\tanh (a+b x))}}{b x-\coth ^{-1}(\tanh (a+b x))}}{b x-\coth ^{-1}(\tanh (a+b x))}\)

input
Int[1/(x*ArcCoth[Tanh[a + b*x]]^3),x]
 
output
-1/2*1/((b*x - ArcCoth[Tanh[a + b*x]])*ArcCoth[Tanh[a + b*x]]^2) - (-(1/(( 
b*x - ArcCoth[Tanh[a + b*x]])*ArcCoth[Tanh[a + b*x]])) - (-(Log[x]/(b*x - 
ArcCoth[Tanh[a + b*x]])) + Log[ArcCoth[Tanh[a + b*x]]]/(b*x - ArcCoth[Tanh 
[a + b*x]]))/(b*x - ArcCoth[Tanh[a + b*x]]))/(b*x - ArcCoth[Tanh[a + b*x]] 
)
 

3.2.81.3.1 Defintions of rubi rules used

rule 14
Int[(a_.)/(x_), x_Symbol] :> Simp[a*Log[x], x] /; FreeQ[a, x]
 

rule 2588
Int[(u_)^(m_.), x_Symbol] :> With[{c = Simplify[D[u, x]]}, Simp[1/c   Subst 
[Int[x^m, x], x, u], x]] /; FreeQ[m, x] && PiecewiseLinearQ[u, x]
 

rule 2591
Int[1/((u_)*(v_)), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D 
[v, x]]}, Simp[b/(b*u - a*v)   Int[1/v, x], x] - Simp[a/(b*u - a*v)   Int[1 
/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x]
 

rule 2594
Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[ 
D[v, x]]}, Simp[v^(n + 1)/((n + 1)*(b*u - a*v)), x] - Simp[a*((n + 1)/((n + 
 1)*(b*u - a*v)))   Int[v^(n + 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; Piecew 
iseLinearQ[u, v, x] && LtQ[n, -1]
 
3.2.81.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.35 (sec) , antiderivative size = 5655, normalized size of antiderivative = 58.30

\[\text {output too large to display}\]

input
int(1/x/arccoth(tanh(b*x+a))^3,x)
 
output
result too large to display
 
3.2.81.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.25 (sec) , antiderivative size = 231, normalized size of antiderivative = 2.38 \[ \int \frac {1}{x \coth ^{-1}(\tanh (a+b x))^3} \, dx=\frac {4 \, {\left (8 \, a b x - 3 \, \pi ^{2} + 4 i \, \pi {\left (b x + 3 \, a\right )} + 12 \, a^{2} - 2 \, {\left (4 \, b^{2} x^{2} + 8 \, a b x - \pi ^{2} + 4 i \, \pi {\left (b x + a\right )} + 4 \, a^{2}\right )} \log \left (i \, \pi + 2 \, b x + 2 \, a\right ) + 2 \, {\left (4 \, b^{2} x^{2} + 8 \, a b x - \pi ^{2} + 4 i \, \pi {\left (b x + a\right )} + 4 \, a^{2}\right )} \log \left (x\right )\right )}}{32 \, a^{3} b^{2} x^{2} + 64 \, a^{4} b x + i \, \pi ^{5} + 2 \, \pi ^{4} {\left (2 \, b x + 5 \, a\right )} + 32 \, a^{5} - 4 i \, \pi ^{3} {\left (b^{2} x^{2} + 8 \, a b x + 10 \, a^{2}\right )} - 8 \, \pi ^{2} {\left (3 \, a b^{2} x^{2} + 12 \, a^{2} b x + 10 \, a^{3}\right )} + 16 i \, \pi {\left (3 \, a^{2} b^{2} x^{2} + 8 \, a^{3} b x + 5 \, a^{4}\right )}} \]

input
integrate(1/x/arccoth(tanh(b*x+a))^3,x, algorithm="fricas")
 
output
4*(8*a*b*x - 3*pi^2 + 4*I*pi*(b*x + 3*a) + 12*a^2 - 2*(4*b^2*x^2 + 8*a*b*x 
 - pi^2 + 4*I*pi*(b*x + a) + 4*a^2)*log(I*pi + 2*b*x + 2*a) + 2*(4*b^2*x^2 
 + 8*a*b*x - pi^2 + 4*I*pi*(b*x + a) + 4*a^2)*log(x))/(32*a^3*b^2*x^2 + 64 
*a^4*b*x + I*pi^5 + 2*pi^4*(2*b*x + 5*a) + 32*a^5 - 4*I*pi^3*(b^2*x^2 + 8* 
a*b*x + 10*a^2) - 8*pi^2*(3*a*b^2*x^2 + 12*a^2*b*x + 10*a^3) + 16*I*pi*(3* 
a^2*b^2*x^2 + 8*a^3*b*x + 5*a^4))
 
3.2.81.6 Sympy [F]

\[ \int \frac {1}{x \coth ^{-1}(\tanh (a+b x))^3} \, dx=\int \frac {1}{x \operatorname {acoth}^{3}{\left (\tanh {\left (a + b x \right )} \right )}}\, dx \]

input
integrate(1/x/acoth(tanh(b*x+a))**3,x)
 
output
Integral(1/(x*acoth(tanh(a + b*x))**3), x)
 
3.2.81.7 Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.82 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.76 \[ \int \frac {1}{x \coth ^{-1}(\tanh (a+b x))^3} \, dx=\frac {4 \, {\left (-3 i \, \pi + 4 \, b x + 6 \, a\right )}}{\pi ^{4} + 8 i \, \pi ^{3} a - 24 \, \pi ^{2} a^{2} - 32 i \, \pi a^{3} + 16 \, a^{4} - 4 \, {\left (\pi ^{2} b^{2} + 4 i \, \pi a b^{2} - 4 \, a^{2} b^{2}\right )} x^{2} - 4 \, {\left (-i \, \pi ^{3} b + 6 \, \pi ^{2} a b + 12 i \, \pi a^{2} b - 8 \, a^{3} b\right )} x} + \frac {8 \, \log \left (-i \, \pi + 2 \, b x + 2 \, a\right )}{-i \, \pi ^{3} + 6 \, \pi ^{2} a + 12 i \, \pi a^{2} - 8 \, a^{3}} - \frac {8 \, \log \left (x\right )}{-i \, \pi ^{3} + 6 \, \pi ^{2} a + 12 i \, \pi a^{2} - 8 \, a^{3}} \]

input
integrate(1/x/arccoth(tanh(b*x+a))^3,x, algorithm="maxima")
 
output
4*(-3*I*pi + 4*b*x + 6*a)/(pi^4 + 8*I*pi^3*a - 24*pi^2*a^2 - 32*I*pi*a^3 + 
 16*a^4 - 4*(pi^2*b^2 + 4*I*pi*a*b^2 - 4*a^2*b^2)*x^2 - 4*(-I*pi^3*b + 6*p 
i^2*a*b + 12*I*pi*a^2*b - 8*a^3*b)*x) + 8*log(-I*pi + 2*b*x + 2*a)/(-I*pi^ 
3 + 6*pi^2*a + 12*I*pi*a^2 - 8*a^3) - 8*log(x)/(-I*pi^3 + 6*pi^2*a + 12*I* 
pi*a^2 - 8*a^3)
 
3.2.81.8 Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.31 (sec) , antiderivative size = 173, normalized size of antiderivative = 1.78 \[ \int \frac {1}{x \coth ^{-1}(\tanh (a+b x))^3} \, dx=\frac {4 \, {\left (-3 i \, \pi - 4 \, b x - 6 \, a\right )}}{4 \, \pi ^{2} b^{2} x^{2} - 16 i \, \pi a b^{2} x^{2} - 16 \, a^{2} b^{2} x^{2} + 4 i \, \pi ^{3} b x + 24 \, \pi ^{2} a b x - 48 i \, \pi a^{2} b x - 32 \, a^{3} b x - \pi ^{4} + 8 i \, \pi ^{3} a + 24 \, \pi ^{2} a^{2} - 32 i \, \pi a^{3} - 16 \, a^{4}} - \frac {8 i \, \log \left (i \, \pi + 2 \, b x + 2 \, a\right )}{\pi ^{3} - 6 i \, \pi ^{2} a - 12 \, \pi a^{2} + 8 i \, a^{3}} + \frac {8 i \, \log \left (x\right )}{\pi ^{3} - 6 i \, \pi ^{2} a - 12 \, \pi a^{2} + 8 i \, a^{3}} \]

input
integrate(1/x/arccoth(tanh(b*x+a))^3,x, algorithm="giac")
 
output
4*(-3*I*pi - 4*b*x - 6*a)/(4*pi^2*b^2*x^2 - 16*I*pi*a*b^2*x^2 - 16*a^2*b^2 
*x^2 + 4*I*pi^3*b*x + 24*pi^2*a*b*x - 48*I*pi*a^2*b*x - 32*a^3*b*x - pi^4 
+ 8*I*pi^3*a + 24*pi^2*a^2 - 32*I*pi*a^3 - 16*a^4) - 8*I*log(I*pi + 2*b*x 
+ 2*a)/(pi^3 - 6*I*pi^2*a - 12*pi*a^2 + 8*I*a^3) + 8*I*log(x)/(pi^3 - 6*I* 
pi^2*a - 12*pi*a^2 + 8*I*a^3)
 
3.2.81.9 Mupad [B] (verification not implemented)

Time = 9.79 (sec) , antiderivative size = 902, normalized size of antiderivative = 9.30 \[ \int \frac {1}{x \coth ^{-1}(\tanh (a+b x))^3} \, dx=\text {Too large to display} \]

input
int(1/(x*acoth(tanh(a + b*x))^3),x)
 
output
- (16*atanh((16*(4*b*x - ((2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp 
(2*b*x) - 1)) + log(-2/(exp(2*a)*exp(2*b*x) - 1)) + 2*b*x)^3 - 8*a^3 - 6*a 
*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) - 1)) + log(-2/(e 
xp(2*a)*exp(2*b*x) - 1)) + 2*b*x)^2 + 12*a^2*(2*a - log((2*exp(2*a)*exp(2* 
b*x))/(exp(2*a)*exp(2*b*x) - 1)) + log(-2/(exp(2*a)*exp(2*b*x) - 1)) + 2*b 
*x))/((2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) - 1)) + log( 
-2/(exp(2*a)*exp(2*b*x) - 1)) + 2*b*x)^2 - 4*a*(2*a - log((2*exp(2*a)*exp( 
2*b*x))/(exp(2*a)*exp(2*b*x) - 1)) + log(-2/(exp(2*a)*exp(2*b*x) - 1)) + 2 
*b*x) + 4*a^2))*((2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) - 
 1)) + log(-2/(exp(2*a)*exp(2*b*x) - 1)) + 2*b*x)^2/16 - (a*(2*a - log((2* 
exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) - 1)) + log(-2/(exp(2*a)*exp(2*b 
*x) - 1)) + 2*b*x))/4 + a^2/4))/(log(-2/(exp(2*a)*exp(2*b*x) - 1)) - log(( 
2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) - 1)) + 2*b*x)^3))/(log(-2/(ex 
p(2*a)*exp(2*b*x) - 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) 
 - 1)) + 2*b*x)^3 - (12/(log(-2/(exp(2*a)*exp(2*b*x) - 1)) - log((2*exp(2* 
a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) - 1)) + 2*b*x) - (16*b*x)/((2*a - log( 
(2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) - 1)) + log(-2/(exp(2*a)*exp( 
2*b*x) - 1)) + 2*b*x)^2 - 4*a*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a) 
*exp(2*b*x) - 1)) + log(-2/(exp(2*a)*exp(2*b*x) - 1)) + 2*b*x) + 4*a^2))/( 
(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) - 1)) + log(-2/...