3.3.13 \(\int x^2 \coth ^{-1}(1-d-d \tanh (a+b x)) \, dx\) [213]

3.3.13.1 Optimal result
3.3.13.2 Mathematica [A] (verified)
3.3.13.3 Rubi [A] (verified)
3.3.13.4 Maple [C] (warning: unable to verify)
3.3.13.5 Fricas [B] (verification not implemented)
3.3.13.6 Sympy [F]
3.3.13.7 Maxima [A] (verification not implemented)
3.3.13.8 Giac [F]
3.3.13.9 Mupad [F(-1)]

3.3.13.1 Optimal result

Integrand size = 19, antiderivative size = 139 \[ \int x^2 \coth ^{-1}(1-d-d \tanh (a+b x)) \, dx=\frac {b x^4}{12}+\frac {1}{3} x^3 \coth ^{-1}(1-d-d \tanh (a+b x))-\frac {1}{6} x^3 \log \left (1+(1-d) e^{2 a+2 b x}\right )-\frac {x^2 \operatorname {PolyLog}\left (2,-\left ((1-d) e^{2 a+2 b x}\right )\right )}{4 b}+\frac {x \operatorname {PolyLog}\left (3,-\left ((1-d) e^{2 a+2 b x}\right )\right )}{4 b^2}-\frac {\operatorname {PolyLog}\left (4,-\left ((1-d) e^{2 a+2 b x}\right )\right )}{8 b^3} \]

output
1/12*b*x^4+1/3*x^3*arccoth(1-d-d*tanh(b*x+a))-1/6*x^3*ln(1+(1-d)*exp(2*b*x 
+2*a))-1/4*x^2*polylog(2,-(1-d)*exp(2*b*x+2*a))/b+1/4*x*polylog(3,-(1-d)*e 
xp(2*b*x+2*a))/b^2-1/8*polylog(4,-(1-d)*exp(2*b*x+2*a))/b^3
 
3.3.13.2 Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.88 \[ \int x^2 \coth ^{-1}(1-d-d \tanh (a+b x)) \, dx=\frac {8 b^3 x^3 \coth ^{-1}(1-d-d \tanh (a+b x))-4 b^3 x^3 \log \left (1-\frac {e^{-2 (a+b x)}}{-1+d}\right )+6 b^2 x^2 \operatorname {PolyLog}\left (2,\frac {e^{-2 (a+b x)}}{-1+d}\right )+6 b x \operatorname {PolyLog}\left (3,\frac {e^{-2 (a+b x)}}{-1+d}\right )+3 \operatorname {PolyLog}\left (4,\frac {e^{-2 (a+b x)}}{-1+d}\right )}{24 b^3} \]

input
Integrate[x^2*ArcCoth[1 - d - d*Tanh[a + b*x]],x]
 
output
(8*b^3*x^3*ArcCoth[1 - d - d*Tanh[a + b*x]] - 4*b^3*x^3*Log[1 - 1/((-1 + d 
)*E^(2*(a + b*x)))] + 6*b^2*x^2*PolyLog[2, 1/((-1 + d)*E^(2*(a + b*x)))] + 
 6*b*x*PolyLog[3, 1/((-1 + d)*E^(2*(a + b*x)))] + 3*PolyLog[4, 1/((-1 + d) 
*E^(2*(a + b*x)))])/(24*b^3)
 
3.3.13.3 Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.31, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.368, Rules used = {6794, 2615, 2620, 3011, 7163, 2720, 7143}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^2 \coth ^{-1}(d (-\tanh (a+b x))-d+1) \, dx\)

\(\Big \downarrow \) 6794

\(\displaystyle \frac {1}{3} b \int \frac {x^3}{e^{2 a+2 b x} (1-d)+1}dx+\frac {1}{3} x^3 \coth ^{-1}(d (-\tanh (a+b x))-d+1)\)

\(\Big \downarrow \) 2615

\(\displaystyle \frac {1}{3} b \left (\frac {x^4}{4}-(1-d) \int \frac {e^{2 a+2 b x} x^3}{e^{2 a+2 b x} (1-d)+1}dx\right )+\frac {1}{3} x^3 \coth ^{-1}(d (-\tanh (a+b x))-d+1)\)

\(\Big \downarrow \) 2620

\(\displaystyle \frac {1}{3} b \left (\frac {x^4}{4}-(1-d) \left (\frac {x^3 \log \left ((1-d) e^{2 a+2 b x}+1\right )}{2 b (1-d)}-\frac {3 \int x^2 \log \left (e^{2 a+2 b x} (1-d)+1\right )dx}{2 b (1-d)}\right )\right )+\frac {1}{3} x^3 \coth ^{-1}(d (-\tanh (a+b x))-d+1)\)

\(\Big \downarrow \) 3011

\(\displaystyle \frac {1}{3} b \left (\frac {x^4}{4}-(1-d) \left (\frac {x^3 \log \left ((1-d) e^{2 a+2 b x}+1\right )}{2 b (1-d)}-\frac {3 \left (\frac {\int x \operatorname {PolyLog}\left (2,-\left ((1-d) e^{2 a+2 b x}\right )\right )dx}{b}-\frac {x^2 \operatorname {PolyLog}\left (2,-\left ((1-d) e^{2 a+2 b x}\right )\right )}{2 b}\right )}{2 b (1-d)}\right )\right )+\frac {1}{3} x^3 \coth ^{-1}(d (-\tanh (a+b x))-d+1)\)

\(\Big \downarrow \) 7163

\(\displaystyle \frac {1}{3} b \left (\frac {x^4}{4}-(1-d) \left (\frac {x^3 \log \left ((1-d) e^{2 a+2 b x}+1\right )}{2 b (1-d)}-\frac {3 \left (\frac {\frac {x \operatorname {PolyLog}\left (3,-\left ((1-d) e^{2 a+2 b x}\right )\right )}{2 b}-\frac {\int \operatorname {PolyLog}\left (3,-\left ((1-d) e^{2 a+2 b x}\right )\right )dx}{2 b}}{b}-\frac {x^2 \operatorname {PolyLog}\left (2,-\left ((1-d) e^{2 a+2 b x}\right )\right )}{2 b}\right )}{2 b (1-d)}\right )\right )+\frac {1}{3} x^3 \coth ^{-1}(d (-\tanh (a+b x))-d+1)\)

\(\Big \downarrow \) 2720

\(\displaystyle \frac {1}{3} b \left (\frac {x^4}{4}-(1-d) \left (\frac {x^3 \log \left ((1-d) e^{2 a+2 b x}+1\right )}{2 b (1-d)}-\frac {3 \left (\frac {\frac {x \operatorname {PolyLog}\left (3,-\left ((1-d) e^{2 a+2 b x}\right )\right )}{2 b}-\frac {\int e^{-2 a-2 b x} \operatorname {PolyLog}\left (3,-\left ((1-d) e^{2 a+2 b x}\right )\right )de^{2 a+2 b x}}{4 b^2}}{b}-\frac {x^2 \operatorname {PolyLog}\left (2,-\left ((1-d) e^{2 a+2 b x}\right )\right )}{2 b}\right )}{2 b (1-d)}\right )\right )+\frac {1}{3} x^3 \coth ^{-1}(d (-\tanh (a+b x))-d+1)\)

\(\Big \downarrow \) 7143

\(\displaystyle \frac {1}{3} b \left (\frac {x^4}{4}-(1-d) \left (\frac {x^3 \log \left ((1-d) e^{2 a+2 b x}+1\right )}{2 b (1-d)}-\frac {3 \left (\frac {\frac {x \operatorname {PolyLog}\left (3,-\left ((1-d) e^{2 a+2 b x}\right )\right )}{2 b}-\frac {\operatorname {PolyLog}\left (4,-\left ((1-d) e^{2 a+2 b x}\right )\right )}{4 b^2}}{b}-\frac {x^2 \operatorname {PolyLog}\left (2,-\left ((1-d) e^{2 a+2 b x}\right )\right )}{2 b}\right )}{2 b (1-d)}\right )\right )+\frac {1}{3} x^3 \coth ^{-1}(d (-\tanh (a+b x))-d+1)\)

input
Int[x^2*ArcCoth[1 - d - d*Tanh[a + b*x]],x]
 
output
(x^3*ArcCoth[1 - d - d*Tanh[a + b*x]])/3 + (b*(x^4/4 - (1 - d)*((x^3*Log[1 
 + (1 - d)*E^(2*a + 2*b*x)])/(2*b*(1 - d)) - (3*(-1/2*(x^2*PolyLog[2, -((1 
 - d)*E^(2*a + 2*b*x))])/b + ((x*PolyLog[3, -((1 - d)*E^(2*a + 2*b*x))])/( 
2*b) - PolyLog[4, -((1 - d)*E^(2*a + 2*b*x))]/(4*b^2))/b))/(2*b*(1 - d)))) 
)/3
 

3.3.13.3.1 Defintions of rubi rules used

rule 2615
Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x 
_))))^(n_.)), x_Symbol] :> Simp[(c + d*x)^(m + 1)/(a*d*(m + 1)), x] - Simp[ 
b/a   Int[(c + d*x)^m*((F^(g*(e + f*x)))^n/(a + b*(F^(g*(e + f*x)))^n)), x] 
, x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2620
Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/ 
((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp 
[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x] - Si 
mp[d*(m/(b*f*g*n*Log[F]))   Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x 
)))^n/a)], x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2720
Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Simp[v/D[v, x] 
   Subst[Int[FunctionOfExponentialFunction[u, x]/x, x], x, v], x]] /; Funct 
ionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; FreeQ 
[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x)) 
*(F_)[v_] /; FreeQ[{a, b, c}, x] && InverseFunctionQ[F[x]]]
 

rule 3011
Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.) 
*(x_))^(m_.), x_Symbol] :> Simp[(-(f + g*x)^m)*(PolyLog[2, (-e)*(F^(c*(a + 
b*x)))^n]/(b*c*n*Log[F])), x] + Simp[g*(m/(b*c*n*Log[F]))   Int[(f + g*x)^( 
m - 1)*PolyLog[2, (-e)*(F^(c*(a + b*x)))^n], x], x] /; FreeQ[{F, a, b, c, e 
, f, g, n}, x] && GtQ[m, 0]
 

rule 6794
Int[ArcCoth[(c_.) + (d_.)*Tanh[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m 
_.), x_Symbol] :> Simp[(e + f*x)^(m + 1)*(ArcCoth[c + d*Tanh[a + b*x]]/(f*( 
m + 1))), x] + Simp[b/(f*(m + 1))   Int[(e + f*x)^(m + 1)/(c - d + c*E^(2*a 
 + 2*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c 
- d)^2, 1]
 

rule 7143
Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_S 
ymbol] :> Simp[PolyLog[n + 1, c*(a + b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d 
, e, n, p}, x] && EqQ[b*d, a*e]
 

rule 7163
Int[((e_.) + (f_.)*(x_))^(m_.)*PolyLog[n_, (d_.)*((F_)^((c_.)*((a_.) + (b_. 
)*(x_))))^(p_.)], x_Symbol] :> Simp[(e + f*x)^m*(PolyLog[n + 1, d*(F^(c*(a 
+ b*x)))^p]/(b*c*p*Log[F])), x] - Simp[f*(m/(b*c*p*Log[F]))   Int[(e + f*x) 
^(m - 1)*PolyLog[n + 1, d*(F^(c*(a + b*x)))^p], x], x] /; FreeQ[{F, a, b, c 
, d, e, f, n, p}, x] && GtQ[m, 0]
 
3.3.13.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.94 (sec) , antiderivative size = 1697, normalized size of antiderivative = 12.21

method result size
risch \(\text {Expression too large to display}\) \(1697\)

input
int(x^2*arccoth(1-d-d*tanh(b*x+a)),x,method=_RETURNVERBOSE)
 
output
-1/12*(-I*Pi*csgn(I/(exp(2*b*x+2*a)+1))*csgn(I/(exp(2*b*x+2*a)+1)*(d*exp(2 
*b*x+2*a)-exp(2*b*x+2*a)-1))^2-2*I*Pi*csgn(I/(exp(2*b*x+2*a)+1)*d*exp(2*b* 
x+2*a))^2+2*I*Pi*csgn(I/(exp(2*b*x+2*a)+1)*(d*exp(2*b*x+2*a)-exp(2*b*x+2*a 
)-1))^2+I*Pi*csgn(I*d)*csgn(I/(exp(2*b*x+2*a)+1)*d*exp(2*b*x+2*a))^2-I*Pi* 
csgn(I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(e 
xp(2*b*x+2*a)+1))+I*Pi*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2 
*b*x+2*a)+1))^2-I*Pi*csgn(I*exp(b*x+a))^2*csgn(I*exp(2*b*x+2*a))-I*Pi*csgn 
(I/(exp(2*b*x+2*a)+1)*(d*exp(2*b*x+2*a)-exp(2*b*x+2*a)-1))^3-I*Pi*csgn(I*e 
xp(2*b*x+2*a))^3+I*Pi*csgn(I/(exp(2*b*x+2*a)+1)*d*exp(2*b*x+2*a))^3+I*Pi*c 
sgn(I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2+2*I* 
Pi*csgn(I*exp(b*x+a))*csgn(I*exp(2*b*x+2*a))^2-I*Pi*csgn(I*exp(2*b*x+2*a)/ 
(exp(2*b*x+2*a)+1))^3+I*Pi*csgn(I/(exp(2*b*x+2*a)+1))*csgn(I*(d*exp(2*b*x+ 
2*a)-exp(2*b*x+2*a)-1))*csgn(I/(exp(2*b*x+2*a)+1)*(d*exp(2*b*x+2*a)-exp(2* 
b*x+2*a)-1))-I*Pi*csgn(I*(d*exp(2*b*x+2*a)-exp(2*b*x+2*a)-1))*csgn(I/(exp( 
2*b*x+2*a)+1)*(d*exp(2*b*x+2*a)-exp(2*b*x+2*a)-1))^2+I*Pi*csgn(I*exp(2*b*x 
+2*a)/(exp(2*b*x+2*a)+1))*csgn(I/(exp(2*b*x+2*a)+1)*d*exp(2*b*x+2*a))^2-I* 
Pi*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))*csgn(I*d)*csgn(I/(exp(2*b*x+2 
*a)+1)*d*exp(2*b*x+2*a))+2*ln(d))*x^3+1/8/b^3/(d-1)*polylog(4,(d-1)*exp(2* 
b*x+2*a))+1/6/(d-1)*ln(1-(d-1)*exp(2*b*x+2*a))*x^3+1/12*b*x^4-1/3*x^3*ln(e 
xp(b*x+a))+1/2/b^2*d/(d-1)*ln(1-(d-1)*exp(2*b*x+2*a))*a^2*x-1/2/b^2*a^2...
 
3.3.13.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 359 vs. \(2 (112) = 224\).

Time = 0.28 (sec) , antiderivative size = 359, normalized size of antiderivative = 2.58 \[ \int x^2 \coth ^{-1}(1-d-d \tanh (a+b x)) \, dx=\frac {b^{4} x^{4} - 2 \, b^{3} x^{3} \log \left (\frac {d \cosh \left (b x + a\right ) + d \sinh \left (b x + a\right )}{{\left (d - 2\right )} \cosh \left (b x + a\right ) + d \sinh \left (b x + a\right )}\right ) - 6 \, b^{2} x^{2} {\rm Li}_2\left (\sqrt {d - 1} {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )}\right ) - 6 \, b^{2} x^{2} {\rm Li}_2\left (-\sqrt {d - 1} {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )}\right ) + 2 \, a^{3} \log \left (2 \, {\left (d - 1\right )} \cosh \left (b x + a\right ) + 2 \, {\left (d - 1\right )} \sinh \left (b x + a\right ) + 2 \, \sqrt {d - 1}\right ) + 2 \, a^{3} \log \left (2 \, {\left (d - 1\right )} \cosh \left (b x + a\right ) + 2 \, {\left (d - 1\right )} \sinh \left (b x + a\right ) - 2 \, \sqrt {d - 1}\right ) + 12 \, b x {\rm polylog}\left (3, \sqrt {d - 1} {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )}\right ) + 12 \, b x {\rm polylog}\left (3, -\sqrt {d - 1} {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )}\right ) - 2 \, {\left (b^{3} x^{3} + a^{3}\right )} \log \left (\sqrt {d - 1} {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )} + 1\right ) - 2 \, {\left (b^{3} x^{3} + a^{3}\right )} \log \left (-\sqrt {d - 1} {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )} + 1\right ) - 12 \, {\rm polylog}\left (4, \sqrt {d - 1} {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )}\right ) - 12 \, {\rm polylog}\left (4, -\sqrt {d - 1} {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )}\right )}{12 \, b^{3}} \]

input
integrate(x^2*arccoth(1-d-d*tanh(b*x+a)),x, algorithm="fricas")
 
output
1/12*(b^4*x^4 - 2*b^3*x^3*log((d*cosh(b*x + a) + d*sinh(b*x + a))/((d - 2) 
*cosh(b*x + a) + d*sinh(b*x + a))) - 6*b^2*x^2*dilog(sqrt(d - 1)*(cosh(b*x 
 + a) + sinh(b*x + a))) - 6*b^2*x^2*dilog(-sqrt(d - 1)*(cosh(b*x + a) + si 
nh(b*x + a))) + 2*a^3*log(2*(d - 1)*cosh(b*x + a) + 2*(d - 1)*sinh(b*x + a 
) + 2*sqrt(d - 1)) + 2*a^3*log(2*(d - 1)*cosh(b*x + a) + 2*(d - 1)*sinh(b* 
x + a) - 2*sqrt(d - 1)) + 12*b*x*polylog(3, sqrt(d - 1)*(cosh(b*x + a) + s 
inh(b*x + a))) + 12*b*x*polylog(3, -sqrt(d - 1)*(cosh(b*x + a) + sinh(b*x 
+ a))) - 2*(b^3*x^3 + a^3)*log(sqrt(d - 1)*(cosh(b*x + a) + sinh(b*x + a)) 
 + 1) - 2*(b^3*x^3 + a^3)*log(-sqrt(d - 1)*(cosh(b*x + a) + sinh(b*x + a)) 
 + 1) - 12*polylog(4, sqrt(d - 1)*(cosh(b*x + a) + sinh(b*x + a))) - 12*po 
lylog(4, -sqrt(d - 1)*(cosh(b*x + a) + sinh(b*x + a))))/b^3
 
3.3.13.6 Sympy [F]

\[ \int x^2 \coth ^{-1}(1-d-d \tanh (a+b x)) \, dx=- \int x^{2} \operatorname {acoth}{\left (d \tanh {\left (a + b x \right )} + d - 1 \right )}\, dx \]

input
integrate(x**2*acoth(1-d-d*tanh(b*x+a)),x)
 
output
-Integral(x**2*acoth(d*tanh(a + b*x) + d - 1), x)
 
3.3.13.7 Maxima [A] (verification not implemented)

Time = 0.74 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.88 \[ \int x^2 \coth ^{-1}(1-d-d \tanh (a+b x)) \, dx=-\frac {1}{3} \, x^{3} \operatorname {arcoth}\left (d \tanh \left (b x + a\right ) + d - 1\right ) + \frac {1}{36} \, {\left (\frac {3 \, x^{4}}{d} - \frac {2 \, {\left (4 \, b^{3} x^{3} \log \left (-{\left (d - 1\right )} e^{\left (2 \, b x + 2 \, a\right )} + 1\right ) + 6 \, b^{2} x^{2} {\rm Li}_2\left ({\left (d - 1\right )} e^{\left (2 \, b x + 2 \, a\right )}\right ) - 6 \, b x {\rm Li}_{3}({\left (d - 1\right )} e^{\left (2 \, b x + 2 \, a\right )}) + 3 \, {\rm Li}_{4}({\left (d - 1\right )} e^{\left (2 \, b x + 2 \, a\right )})\right )}}{b^{4} d}\right )} b d \]

input
integrate(x^2*arccoth(1-d-d*tanh(b*x+a)),x, algorithm="maxima")
 
output
-1/3*x^3*arccoth(d*tanh(b*x + a) + d - 1) + 1/36*(3*x^4/d - 2*(4*b^3*x^3*l 
og(-(d - 1)*e^(2*b*x + 2*a) + 1) + 6*b^2*x^2*dilog((d - 1)*e^(2*b*x + 2*a) 
) - 6*b*x*polylog(3, (d - 1)*e^(2*b*x + 2*a)) + 3*polylog(4, (d - 1)*e^(2* 
b*x + 2*a)))/(b^4*d))*b*d
 
3.3.13.8 Giac [F]

\[ \int x^2 \coth ^{-1}(1-d-d \tanh (a+b x)) \, dx=\int { x^{2} \operatorname {arcoth}\left (-d \tanh \left (b x + a\right ) - d + 1\right ) \,d x } \]

input
integrate(x^2*arccoth(1-d-d*tanh(b*x+a)),x, algorithm="giac")
 
output
integrate(x^2*arccoth(-d*tanh(b*x + a) - d + 1), x)
 
3.3.13.9 Mupad [F(-1)]

Timed out. \[ \int x^2 \coth ^{-1}(1-d-d \tanh (a+b x)) \, dx=\int -x^2\,\mathrm {acoth}\left (d+d\,\mathrm {tanh}\left (a+b\,x\right )-1\right ) \,d x \]

input
int(-x^2*acoth(d + d*tanh(a + b*x) - 1),x)
 
output
int(-x^2*acoth(d + d*tanh(a + b*x) - 1), x)