3.2.28 \(\int e^{\frac {1}{4} \coth ^{-1}(a x)} \, dx\) [128]

3.2.28.1 Optimal result
3.2.28.2 Mathematica [C] (verified)
3.2.28.3 Rubi [A] (warning: unable to verify)
3.2.28.4 Maple [F]
3.2.28.5 Fricas [C] (verification not implemented)
3.2.28.6 Sympy [F]
3.2.28.7 Maxima [A] (verification not implemented)
3.2.28.8 Giac [F]
3.2.28.9 Mupad [B] (verification not implemented)

3.2.28.1 Optimal result

Integrand size = 10, antiderivative size = 352 \[ \int e^{\frac {1}{4} \coth ^{-1}(a x)} \, dx=\left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{1+\frac {1}{a x}} x-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 \sqrt {2} a}+\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 \sqrt {2} a}+\frac {\arctan \left (\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 a}+\frac {\text {arctanh}\left (\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 a}-\frac {\log \left (1-\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}+\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{4 \sqrt {2} a}+\frac {\log \left (1+\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}+\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{4 \sqrt {2} a} \]

output
(1-1/a/x)^(7/8)*(1+1/a/x)^(1/8)*x+1/2*arctan((1+1/a/x)^(1/8)/(1-1/a/x)^(1/ 
8))/a+1/2*arctanh((1+1/a/x)^(1/8)/(1-1/a/x)^(1/8))/a-1/4*arctan(1-(1+1/a/x 
)^(1/8)*2^(1/2)/(1-1/a/x)^(1/8))/a*2^(1/2)+1/4*arctan(1+(1+1/a/x)^(1/8)*2^ 
(1/2)/(1-1/a/x)^(1/8))/a*2^(1/2)-1/8*ln(1+(1+1/a/x)^(1/4)/(1-1/a/x)^(1/4)- 
(1+1/a/x)^(1/8)*2^(1/2)/(1-1/a/x)^(1/8))/a*2^(1/2)+1/8*ln(1+(1+1/a/x)^(1/4 
)/(1-1/a/x)^(1/4)+(1+1/a/x)^(1/8)*2^(1/2)/(1-1/a/x)^(1/8))/a*2^(1/2)
 
3.2.28.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.06 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.16 \[ \int e^{\frac {1}{4} \coth ^{-1}(a x)} \, dx=\frac {2 e^{\frac {1}{4} \coth ^{-1}(a x)} \left (1+\left (-1+e^{2 \coth ^{-1}(a x)}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{8},1,\frac {9}{8},e^{2 \coth ^{-1}(a x)}\right )\right )}{a \left (-1+e^{2 \coth ^{-1}(a x)}\right )} \]

input
Integrate[E^(ArcCoth[a*x]/4),x]
 
output
(2*E^(ArcCoth[a*x]/4)*(1 + (-1 + E^(2*ArcCoth[a*x]))*Hypergeometric2F1[1/8 
, 1, 9/8, E^(2*ArcCoth[a*x])]))/(a*(-1 + E^(2*ArcCoth[a*x])))
 
3.2.28.3 Rubi [A] (warning: unable to verify)

Time = 0.43 (sec) , antiderivative size = 305, normalized size of antiderivative = 0.87, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.500, Rules used = {6720, 105, 104, 758, 755, 756, 216, 219, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int e^{\frac {1}{4} \coth ^{-1}(a x)} \, dx\)

\(\Big \downarrow \) 6720

\(\displaystyle -\int \frac {\sqrt [8]{1+\frac {1}{a x}} x^2}{\sqrt [8]{1-\frac {1}{a x}}}d\frac {1}{x}\)

\(\Big \downarrow \) 105

\(\displaystyle x \left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{\frac {1}{a x}+1}-\frac {\int \frac {x}{\sqrt [8]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{7/8}}d\frac {1}{x}}{4 a}\)

\(\Big \downarrow \) 104

\(\displaystyle x \left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{\frac {1}{a x}+1}-\frac {2 \int \frac {1}{\frac {1}{x^8}-1}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}}{a}\)

\(\Big \downarrow \) 758

\(\displaystyle x \left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{\frac {1}{a x}+1}-\frac {2 \left (-\frac {1}{2} \int \frac {1}{1-\frac {1}{x^4}}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}-\frac {1}{2} \int \frac {1}{1+\frac {1}{x^4}}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{a}\)

\(\Big \downarrow \) 755

\(\displaystyle x \left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{\frac {1}{a x}+1}-\frac {2 \left (\frac {1}{2} \left (-\frac {1}{2} \int \frac {1-\frac {1}{x^2}}{1+\frac {1}{x^4}}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}-\frac {1}{2} \int \frac {1+\frac {1}{x^2}}{1+\frac {1}{x^4}}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )-\frac {1}{2} \int \frac {1}{1-\frac {1}{x^4}}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{a}\)

\(\Big \downarrow \) 756

\(\displaystyle x \left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{\frac {1}{a x}+1}-\frac {2 \left (\frac {1}{2} \left (-\frac {1}{2} \int \frac {1}{1-\frac {1}{x^2}}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}-\frac {1}{2} \int \frac {1}{1+\frac {1}{x^2}}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )+\frac {1}{2} \left (-\frac {1}{2} \int \frac {1-\frac {1}{x^2}}{1+\frac {1}{x^4}}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}-\frac {1}{2} \int \frac {1+\frac {1}{x^2}}{1+\frac {1}{x^4}}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )\right )}{a}\)

\(\Big \downarrow \) 216

\(\displaystyle x \left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{\frac {1}{a x}+1}-\frac {2 \left (\frac {1}{2} \left (-\frac {1}{2} \int \frac {1}{1-\frac {1}{x^2}}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}-\frac {1}{2} \arctan \left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )\right )+\frac {1}{2} \left (-\frac {1}{2} \int \frac {1-\frac {1}{x^2}}{1+\frac {1}{x^4}}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}-\frac {1}{2} \int \frac {1+\frac {1}{x^2}}{1+\frac {1}{x^4}}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )\right )}{a}\)

\(\Big \downarrow \) 219

\(\displaystyle x \left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{\frac {1}{a x}+1}-\frac {2 \left (\frac {1}{2} \left (-\frac {1}{2} \int \frac {1-\frac {1}{x^2}}{1+\frac {1}{x^4}}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}-\frac {1}{2} \int \frac {1+\frac {1}{x^2}}{1+\frac {1}{x^4}}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )+\frac {1}{2} \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )\right )\right )}{a}\)

\(\Big \downarrow \) 1476

\(\displaystyle x \left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{\frac {1}{a x}+1}-\frac {2 \left (\frac {1}{2} \left (\frac {1}{2} \left (-\frac {1}{2} \int \frac {1}{-\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}+\frac {1}{x^2}+1}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}-\frac {1}{2} \int \frac {1}{\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}+\frac {1}{x^2}+1}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )-\frac {1}{2} \int \frac {1-\frac {1}{x^2}}{1+\frac {1}{x^4}}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )+\frac {1}{2} \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )\right )\right )}{a}\)

\(\Big \downarrow \) 1082

\(\displaystyle x \left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{\frac {1}{a x}+1}-\frac {2 \left (\frac {1}{2} \left (\frac {1}{2} \left (\frac {\int \frac {1}{-1-\frac {1}{x^2}}d\left (\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}+1\right )}{\sqrt {2}}-\frac {\int \frac {1}{-1-\frac {1}{x^2}}d\left (1-\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{\sqrt {2}}\right )-\frac {1}{2} \int \frac {1-\frac {1}{x^2}}{1+\frac {1}{x^4}}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )+\frac {1}{2} \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )\right )\right )}{a}\)

\(\Big \downarrow \) 217

\(\displaystyle x \left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{\frac {1}{a x}+1}-\frac {2 \left (\frac {1}{2} \left (\frac {1}{2} \left (\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{\sqrt {2}}-\frac {\arctan \left (\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}+1\right )}{\sqrt {2}}\right )-\frac {1}{2} \int \frac {1-\frac {1}{x^2}}{1+\frac {1}{x^4}}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )+\frac {1}{2} \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )\right )\right )}{a}\)

\(\Big \downarrow \) 1479

\(\displaystyle x \left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{\frac {1}{a x}+1}-\frac {2 \left (\frac {1}{2} \left (\frac {1}{2} \left (\frac {\int -\frac {\sqrt {2}-\frac {2 \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}}{-\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}+\frac {1}{x^2}+1}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}}{2 \sqrt {2}}+\frac {\int -\frac {\sqrt {2} \left (\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}+1\right )}{\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}+\frac {1}{x^2}+1}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{\sqrt {2}}-\frac {\arctan \left (\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}+1\right )}{\sqrt {2}}\right )\right )+\frac {1}{2} \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )\right )\right )}{a}\)

\(\Big \downarrow \) 25

\(\displaystyle x \left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{\frac {1}{a x}+1}-\frac {2 \left (\frac {1}{2} \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2}-\frac {2 \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}}{-\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}+\frac {1}{x^2}+1}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}}{2 \sqrt {2}}-\frac {\int \frac {\sqrt {2} \left (\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}+1\right )}{\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}+\frac {1}{x^2}+1}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{\sqrt {2}}-\frac {\arctan \left (\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}+1\right )}{\sqrt {2}}\right )\right )+\frac {1}{2} \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )\right )\right )}{a}\)

\(\Big \downarrow \) 27

\(\displaystyle x \left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{\frac {1}{a x}+1}-\frac {2 \left (\frac {1}{2} \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2}-\frac {2 \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}}{-\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}+\frac {1}{x^2}+1}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}}{2 \sqrt {2}}-\frac {1}{2} \int \frac {\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}+1}{\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}+\frac {1}{x^2}+1}d\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )+\frac {1}{2} \left (\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{\sqrt {2}}-\frac {\arctan \left (\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}+1\right )}{\sqrt {2}}\right )\right )+\frac {1}{2} \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )\right )\right )}{a}\)

\(\Big \downarrow \) 1103

\(\displaystyle x \left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{\frac {1}{a x}+1}-\frac {2 \left (\frac {1}{2} \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )\right )+\frac {1}{2} \left (\frac {1}{2} \left (\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{\sqrt {2}}-\frac {\arctan \left (\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}+1\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (\frac {\log \left (-\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}+\frac {1}{x^2}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}+\frac {1}{x^2}+1\right )}{2 \sqrt {2}}\right )\right )\right )}{a}\)

input
Int[E^(ArcCoth[a*x]/4),x]
 
output
(1 - 1/(a*x))^(7/8)*(1 + 1/(a*x))^(1/8)*x - (2*((-1/2*ArcTan[(1 + 1/(a*x)) 
^(1/8)/(1 - 1/(a*x))^(1/8)] - ArcTanh[(1 + 1/(a*x))^(1/8)/(1 - 1/(a*x))^(1 
/8)]/2)/2 + ((ArcTan[1 - (Sqrt[2]*(1 + 1/(a*x))^(1/8))/(1 - 1/(a*x))^(1/8) 
]/Sqrt[2] - ArcTan[1 + (Sqrt[2]*(1 + 1/(a*x))^(1/8))/(1 - 1/(a*x))^(1/8)]/ 
Sqrt[2])/2 + (Log[1 - (Sqrt[2]*(1 + 1/(a*x))^(1/8))/(1 - 1/(a*x))^(1/8) + 
x^(-2)]/(2*Sqrt[2]) - Log[1 + (Sqrt[2]*(1 + 1/(a*x))^(1/8))/(1 - 1/(a*x))^ 
(1/8) + x^(-2)]/(2*Sqrt[2]))/2)/2))/a
 

3.2.28.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 105
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 
1)*(b*e - a*f))), x] - Simp[n*((d*e - c*f)/((m + 1)*(b*e - a*f)))   Int[(a 
+ b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, 
e, f, m, p}, x] && EqQ[m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] 
 ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 758
Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b 
, 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^(n/2)), 
 x], x] + Simp[r/(2*a)   Int[1/(r + s*x^(n/2)), x], x]] /; FreeQ[{a, b}, x] 
 && IGtQ[n/4, 1] &&  !GtQ[a/b, 0]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 6720
Int[E^(ArcCoth[(a_.)*(x_)]*(n_)), x_Symbol] :> -Subst[Int[(1 + x/a)^(n/2)/( 
x^2*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, n}, x] &&  !IntegerQ[n]
 
3.2.28.4 Maple [F]

\[\int \frac {1}{\left (\frac {a x -1}{a x +1}\right )^{\frac {1}{8}}}d x\]

input
int(1/((a*x-1)/(a*x+1))^(1/8),x)
 
output
int(1/((a*x-1)/(a*x+1))^(1/8),x)
 
3.2.28.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.27 (sec) , antiderivative size = 238, normalized size of antiderivative = 0.68 \[ \int e^{\frac {1}{4} \coth ^{-1}(a x)} \, dx=-\frac {a \left (-\frac {1}{a^{4}}\right )^{\frac {1}{4}} \log \left (a^{3} \left (-\frac {1}{a^{4}}\right )^{\frac {3}{4}} + \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}}\right ) - i \, a \left (-\frac {1}{a^{4}}\right )^{\frac {1}{4}} \log \left (i \, a^{3} \left (-\frac {1}{a^{4}}\right )^{\frac {3}{4}} + \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}}\right ) + i \, a \left (-\frac {1}{a^{4}}\right )^{\frac {1}{4}} \log \left (-i \, a^{3} \left (-\frac {1}{a^{4}}\right )^{\frac {3}{4}} + \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}}\right ) - a \left (-\frac {1}{a^{4}}\right )^{\frac {1}{4}} \log \left (-a^{3} \left (-\frac {1}{a^{4}}\right )^{\frac {3}{4}} + \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}}\right ) - 4 \, {\left (a x + 1\right )} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {7}{8}} + 2 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}}\right ) - \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} + 1\right ) + \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} - 1\right )}{4 \, a} \]

input
integrate(1/((a*x-1)/(a*x+1))^(1/8),x, algorithm="fricas")
 
output
-1/4*(a*(-1/a^4)^(1/4)*log(a^3*(-1/a^4)^(3/4) + ((a*x - 1)/(a*x + 1))^(1/8 
)) - I*a*(-1/a^4)^(1/4)*log(I*a^3*(-1/a^4)^(3/4) + ((a*x - 1)/(a*x + 1))^( 
1/8)) + I*a*(-1/a^4)^(1/4)*log(-I*a^3*(-1/a^4)^(3/4) + ((a*x - 1)/(a*x + 1 
))^(1/8)) - a*(-1/a^4)^(1/4)*log(-a^3*(-1/a^4)^(3/4) + ((a*x - 1)/(a*x + 1 
))^(1/8)) - 4*(a*x + 1)*((a*x - 1)/(a*x + 1))^(7/8) + 2*arctan(((a*x - 1)/ 
(a*x + 1))^(1/8)) - log(((a*x - 1)/(a*x + 1))^(1/8) + 1) + log(((a*x - 1)/ 
(a*x + 1))^(1/8) - 1))/a
 
3.2.28.6 Sympy [F]

\[ \int e^{\frac {1}{4} \coth ^{-1}(a x)} \, dx=\int \frac {1}{\sqrt [8]{\frac {a x - 1}{a x + 1}}}\, dx \]

input
integrate(1/((a*x-1)/(a*x+1))**(1/8),x)
 
output
Integral(((a*x - 1)/(a*x + 1))**(-1/8), x)
 
3.2.28.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 265, normalized size of antiderivative = 0.75 \[ \int e^{\frac {1}{4} \coth ^{-1}(a x)} \, dx=-\frac {1}{8} \, a {\left (\frac {16 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {7}{8}}}{\frac {{\left (a x - 1\right )} a^{2}}{a x + 1} - a^{2}} + \frac {2 \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}}\right )}\right ) + 2 \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}}\right )}\right ) - \sqrt {2} \log \left (\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} + \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right ) + \sqrt {2} \log \left (-\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} + \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a^{2}} + \frac {4 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}}\right )}{a^{2}} - \frac {2 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} + 1\right )}{a^{2}} + \frac {2 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} - 1\right )}{a^{2}}\right )} \]

input
integrate(1/((a*x-1)/(a*x+1))^(1/8),x, algorithm="maxima")
 
output
-1/8*a*(16*((a*x - 1)/(a*x + 1))^(7/8)/((a*x - 1)*a^2/(a*x + 1) - a^2) + ( 
2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*((a*x - 1)/(a*x + 1))^(1/8))) + 
2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*((a*x - 1)/(a*x + 1))^(1/8))) - 
 sqrt(2)*log(sqrt(2)*((a*x - 1)/(a*x + 1))^(1/8) + ((a*x - 1)/(a*x + 1))^( 
1/4) + 1) + sqrt(2)*log(-sqrt(2)*((a*x - 1)/(a*x + 1))^(1/8) + ((a*x - 1)/ 
(a*x + 1))^(1/4) + 1))/a^2 + 4*arctan(((a*x - 1)/(a*x + 1))^(1/8))/a^2 - 2 
*log(((a*x - 1)/(a*x + 1))^(1/8) + 1)/a^2 + 2*log(((a*x - 1)/(a*x + 1))^(1 
/8) - 1)/a^2)
 
3.2.28.8 Giac [F]

\[ \int e^{\frac {1}{4} \coth ^{-1}(a x)} \, dx=\int { \frac {1}{\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}}} \,d x } \]

input
integrate(1/((a*x-1)/(a*x+1))^(1/8),x, algorithm="giac")
 
output
integrate(((a*x - 1)/(a*x + 1))^(-1/8), x)
 
3.2.28.9 Mupad [B] (verification not implemented)

Time = 4.40 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.42 \[ \int e^{\frac {1}{4} \coth ^{-1}(a x)} \, dx=\frac {2\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{7/8}}{a-\frac {a\,\left (a\,x-1\right )}{a\,x+1}}-\frac {\mathrm {atan}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/8}\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{2\,a}-\frac {\mathrm {atan}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/8}\right )}{2\,a}+\frac {\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/8}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (-\frac {1}{4}+\frac {1}{4}{}\mathrm {i}\right )}{a}+\frac {\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/8}\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (-\frac {1}{4}-\frac {1}{4}{}\mathrm {i}\right )}{a} \]

input
int(1/((a*x - 1)/(a*x + 1))^(1/8),x)
 
output
(2*((a*x - 1)/(a*x + 1))^(7/8))/(a - (a*(a*x - 1))/(a*x + 1)) - (atan(((a* 
x - 1)/(a*x + 1))^(1/8)*1i)*1i)/(2*a) - atan(((a*x - 1)/(a*x + 1))^(1/8))/ 
(2*a) - (2^(1/2)*atan(2^(1/2)*((a*x - 1)/(a*x + 1))^(1/8)*(1/2 - 1i/2))*(1 
/4 - 1i/4))/a - (2^(1/2)*atan(2^(1/2)*((a*x - 1)/(a*x + 1))^(1/8)*(1/2 + 1 
i/2))*(1/4 + 1i/4))/a