3.3.49 \(\int \frac {e^{3 \coth ^{-1}(a x)}}{(c-a c x)^{3/2}} \, dx\) [249]

3.3.49.1 Optimal result
3.3.49.2 Mathematica [A] (verified)
3.3.49.3 Rubi [A] (verified)
3.3.49.4 Maple [A] (verified)
3.3.49.5 Fricas [A] (verification not implemented)
3.3.49.6 Sympy [F(-1)]
3.3.49.7 Maxima [F]
3.3.49.8 Giac [A] (verification not implemented)
3.3.49.9 Mupad [F(-1)]

3.3.49.1 Optimal result

Integrand size = 20, antiderivative size = 187 \[ \int \frac {e^{3 \coth ^{-1}(a x)}}{(c-a c x)^{3/2}} \, dx=-\frac {3 a \left (1-\frac {1}{a x}\right )^{3/2} \sqrt {1+\frac {1}{a x}} x}{4 \left (a-\frac {1}{x}\right ) (c-a c x)^{3/2}}-\frac {a^2 \left (1-\frac {1}{a x}\right )^{3/2} \left (1+\frac {1}{a x}\right )^{3/2} x}{2 \left (a-\frac {1}{x}\right )^2 (c-a c x)^{3/2}}-\frac {3 \sqrt {a} \left (1-\frac {1}{a x}\right )^{3/2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {1+\frac {1}{a x}}}\right )}{4 \sqrt {2} \left (\frac {1}{x}\right )^{3/2} (c-a c x)^{3/2}} \]

output
-1/2*a^2*(1-1/a/x)^(3/2)*(1+1/a/x)^(3/2)*x/(a-1/x)^2/(-a*c*x+c)^(3/2)-3/8* 
(1-1/a/x)^(3/2)*arctanh(2^(1/2)*(1/x)^(1/2)/a^(1/2)/(1+1/a/x)^(1/2))*a^(1/ 
2)/(1/x)^(3/2)/(-a*c*x+c)^(3/2)*2^(1/2)-3/4*a*(1-1/a/x)^(3/2)*x*(1+1/a/x)^ 
(1/2)/(a-1/x)/(-a*c*x+c)^(3/2)
 
3.3.49.2 Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.67 \[ \int \frac {e^{3 \coth ^{-1}(a x)}}{(c-a c x)^{3/2}} \, dx=\frac {\sqrt {1-\frac {1}{a x}} x \left (2 \sqrt {a} \sqrt {1+\frac {1}{a x}} (-1+5 a x)+3 \sqrt {2} \sqrt {\frac {1}{x}} (-1+a x)^2 \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {1+\frac {1}{a x}}}\right )\right )}{8 \sqrt {a} c (-1+a x)^2 \sqrt {c-a c x}} \]

input
Integrate[E^(3*ArcCoth[a*x])/(c - a*c*x)^(3/2),x]
 
output
(Sqrt[1 - 1/(a*x)]*x*(2*Sqrt[a]*Sqrt[1 + 1/(a*x)]*(-1 + 5*a*x) + 3*Sqrt[2] 
*Sqrt[x^(-1)]*(-1 + a*x)^2*ArcTanh[(Sqrt[2]*Sqrt[x^(-1)])/(Sqrt[a]*Sqrt[1 
+ 1/(a*x)])]))/(8*Sqrt[a]*c*(-1 + a*x)^2*Sqrt[c - a*c*x])
 
3.3.49.3 Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 158, normalized size of antiderivative = 0.84, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {6727, 27, 105, 105, 104, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{3 \coth ^{-1}(a x)}}{(c-a c x)^{3/2}} \, dx\)

\(\Big \downarrow \) 6727

\(\displaystyle -\frac {\left (1-\frac {1}{a x}\right )^{3/2} \int \frac {a^3 \left (1+\frac {1}{a x}\right )^{3/2}}{\left (a-\frac {1}{x}\right )^3 \sqrt {\frac {1}{x}}}d\frac {1}{x}}{\left (\frac {1}{x}\right )^{3/2} (c-a c x)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a^3 \left (1-\frac {1}{a x}\right )^{3/2} \int \frac {\left (1+\frac {1}{a x}\right )^{3/2}}{\left (a-\frac {1}{x}\right )^3 \sqrt {\frac {1}{x}}}d\frac {1}{x}}{\left (\frac {1}{x}\right )^{3/2} (c-a c x)^{3/2}}\)

\(\Big \downarrow \) 105

\(\displaystyle -\frac {a^3 \left (1-\frac {1}{a x}\right )^{3/2} \left (\frac {3 \int \frac {\sqrt {1+\frac {1}{a x}}}{\left (a-\frac {1}{x}\right )^2 \sqrt {\frac {1}{x}}}d\frac {1}{x}}{4 a}+\frac {\sqrt {\frac {1}{x}} \left (\frac {1}{a x}+1\right )^{3/2}}{2 a \left (a-\frac {1}{x}\right )^2}\right )}{\left (\frac {1}{x}\right )^{3/2} (c-a c x)^{3/2}}\)

\(\Big \downarrow \) 105

\(\displaystyle -\frac {a^3 \left (1-\frac {1}{a x}\right )^{3/2} \left (\frac {3 \left (\frac {\int \frac {1}{\left (a-\frac {1}{x}\right ) \sqrt {1+\frac {1}{a x}} \sqrt {\frac {1}{x}}}d\frac {1}{x}}{2 a}+\frac {\sqrt {\frac {1}{x}} \sqrt {\frac {1}{a x}+1}}{a \left (a-\frac {1}{x}\right )}\right )}{4 a}+\frac {\sqrt {\frac {1}{x}} \left (\frac {1}{a x}+1\right )^{3/2}}{2 a \left (a-\frac {1}{x}\right )^2}\right )}{\left (\frac {1}{x}\right )^{3/2} (c-a c x)^{3/2}}\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {a^3 \left (1-\frac {1}{a x}\right )^{3/2} \left (\frac {3 \left (\frac {\int \frac {1}{a-\frac {2}{x^2}}d\frac {\sqrt {\frac {1}{x}}}{\sqrt {1+\frac {1}{a x}}}}{a}+\frac {\sqrt {\frac {1}{x}} \sqrt {\frac {1}{a x}+1}}{a \left (a-\frac {1}{x}\right )}\right )}{4 a}+\frac {\sqrt {\frac {1}{x}} \left (\frac {1}{a x}+1\right )^{3/2}}{2 a \left (a-\frac {1}{x}\right )^2}\right )}{\left (\frac {1}{x}\right )^{3/2} (c-a c x)^{3/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {a^3 \left (1-\frac {1}{a x}\right )^{3/2} \left (\frac {3 \left (\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {\frac {1}{a x}+1}}\right )}{\sqrt {2} a^{3/2}}+\frac {\sqrt {\frac {1}{x}} \sqrt {\frac {1}{a x}+1}}{a \left (a-\frac {1}{x}\right )}\right )}{4 a}+\frac {\sqrt {\frac {1}{x}} \left (\frac {1}{a x}+1\right )^{3/2}}{2 a \left (a-\frac {1}{x}\right )^2}\right )}{\left (\frac {1}{x}\right )^{3/2} (c-a c x)^{3/2}}\)

input
Int[E^(3*ArcCoth[a*x])/(c - a*c*x)^(3/2),x]
 
output
-((a^3*(1 - 1/(a*x))^(3/2)*(((1 + 1/(a*x))^(3/2)*Sqrt[x^(-1)])/(2*a*(a - x 
^(-1))^2) + (3*((Sqrt[1 + 1/(a*x)]*Sqrt[x^(-1)])/(a*(a - x^(-1))) + ArcTan 
h[(Sqrt[2]*Sqrt[x^(-1)])/(Sqrt[a]*Sqrt[1 + 1/(a*x)])]/(Sqrt[2]*a^(3/2))))/ 
(4*a)))/((x^(-1))^(3/2)*(c - a*c*x)^(3/2)))
 

3.3.49.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 105
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 
1)*(b*e - a*f))), x] - Simp[n*((d*e - c*f)/((m + 1)*(b*e - a*f)))   Int[(a 
+ b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, 
e, f, m, p}, x] && EqQ[m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] 
 ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 6727
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_), x_Symbol] :> Si 
mp[(-(1/x)^p)*((c + d*x)^p/(1 + c/(d*x))^p)   Subst[Int[((1 + c*(x/d))^p*(( 
1 + x/a)^(n/2)/x^(p + 2)))/(1 - x/a)^(n/2), x], x, 1/x], x] /; FreeQ[{a, c, 
 d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !IntegerQ[p]
 
3.3.49.4 Maple [A] (verified)

Time = 0.43 (sec) , antiderivative size = 174, normalized size of antiderivative = 0.93

method result size
default \(-\frac {\sqrt {-c \left (a x -1\right )}\, \left (3 \sqrt {2}\, \arctan \left (\frac {\sqrt {-c \left (a x +1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) a^{2} c \,x^{2}-6 \sqrt {2}\, \arctan \left (\frac {\sqrt {-c \left (a x +1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) a c x +10 a x \sqrt {c}\, \sqrt {-c \left (a x +1\right )}+3 \sqrt {2}\, \arctan \left (\frac {\sqrt {-c \left (a x +1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c -2 \sqrt {-c \left (a x +1\right )}\, \sqrt {c}\right )}{8 \left (\frac {a x -1}{a x +1}\right )^{\frac {3}{2}} \left (a x -1\right ) \left (a x +1\right ) c^{\frac {5}{2}} \sqrt {-c \left (a x +1\right )}\, a}\) \(174\)

input
int(1/((a*x-1)/(a*x+1))^(3/2)/(-a*c*x+c)^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/8/((a*x-1)/(a*x+1))^(3/2)/(a*x-1)/(a*x+1)*(-c*(a*x-1))^(1/2)/c^(5/2)*(3 
*2^(1/2)*arctan(1/2*(-c*(a*x+1))^(1/2)*2^(1/2)/c^(1/2))*a^2*c*x^2-6*2^(1/2 
)*arctan(1/2*(-c*(a*x+1))^(1/2)*2^(1/2)/c^(1/2))*a*c*x+10*a*x*c^(1/2)*(-c* 
(a*x+1))^(1/2)+3*2^(1/2)*arctan(1/2*(-c*(a*x+1))^(1/2)*2^(1/2)/c^(1/2))*c- 
2*(-c*(a*x+1))^(1/2)*c^(1/2))/(-c*(a*x+1))^(1/2)/a
 
3.3.49.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 341, normalized size of antiderivative = 1.82 \[ \int \frac {e^{3 \coth ^{-1}(a x)}}{(c-a c x)^{3/2}} \, dx=\left [-\frac {3 \, \sqrt {2} {\left (a^{3} x^{3} - 3 \, a^{2} x^{2} + 3 \, a x - 1\right )} \sqrt {-c} \log \left (-\frac {a^{2} c x^{2} + 2 \, a c x - 2 \, \sqrt {2} \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {-c} \sqrt {\frac {a x - 1}{a x + 1}} - 3 \, c}{a^{2} x^{2} - 2 \, a x + 1}\right ) + 4 \, {\left (5 \, a^{2} x^{2} + 4 \, a x - 1\right )} \sqrt {-a c x + c} \sqrt {\frac {a x - 1}{a x + 1}}}{16 \, {\left (a^{4} c^{2} x^{3} - 3 \, a^{3} c^{2} x^{2} + 3 \, a^{2} c^{2} x - a c^{2}\right )}}, -\frac {3 \, \sqrt {2} {\left (a^{3} x^{3} - 3 \, a^{2} x^{2} + 3 \, a x - 1\right )} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {-a c x + c} \sqrt {c} \sqrt {\frac {a x - 1}{a x + 1}}}{a c x - c}\right ) + 2 \, {\left (5 \, a^{2} x^{2} + 4 \, a x - 1\right )} \sqrt {-a c x + c} \sqrt {\frac {a x - 1}{a x + 1}}}{8 \, {\left (a^{4} c^{2} x^{3} - 3 \, a^{3} c^{2} x^{2} + 3 \, a^{2} c^{2} x - a c^{2}\right )}}\right ] \]

input
integrate(1/((a*x-1)/(a*x+1))^(3/2)/(-a*c*x+c)^(3/2),x, algorithm="fricas" 
)
 
output
[-1/16*(3*sqrt(2)*(a^3*x^3 - 3*a^2*x^2 + 3*a*x - 1)*sqrt(-c)*log(-(a^2*c*x 
^2 + 2*a*c*x - 2*sqrt(2)*sqrt(-a*c*x + c)*(a*x + 1)*sqrt(-c)*sqrt((a*x - 1 
)/(a*x + 1)) - 3*c)/(a^2*x^2 - 2*a*x + 1)) + 4*(5*a^2*x^2 + 4*a*x - 1)*sqr 
t(-a*c*x + c)*sqrt((a*x - 1)/(a*x + 1)))/(a^4*c^2*x^3 - 3*a^3*c^2*x^2 + 3* 
a^2*c^2*x - a*c^2), -1/8*(3*sqrt(2)*(a^3*x^3 - 3*a^2*x^2 + 3*a*x - 1)*sqrt 
(c)*arctan(sqrt(2)*sqrt(-a*c*x + c)*sqrt(c)*sqrt((a*x - 1)/(a*x + 1))/(a*c 
*x - c)) + 2*(5*a^2*x^2 + 4*a*x - 1)*sqrt(-a*c*x + c)*sqrt((a*x - 1)/(a*x 
+ 1)))/(a^4*c^2*x^3 - 3*a^3*c^2*x^2 + 3*a^2*c^2*x - a*c^2)]
 
3.3.49.6 Sympy [F(-1)]

Timed out. \[ \int \frac {e^{3 \coth ^{-1}(a x)}}{(c-a c x)^{3/2}} \, dx=\text {Timed out} \]

input
integrate(1/((a*x-1)/(a*x+1))**(3/2)/(-a*c*x+c)**(3/2),x)
 
output
Timed out
 
3.3.49.7 Maxima [F]

\[ \int \frac {e^{3 \coth ^{-1}(a x)}}{(c-a c x)^{3/2}} \, dx=\int { \frac {1}{{\left (-a c x + c\right )}^{\frac {3}{2}} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(1/((a*x-1)/(a*x+1))^(3/2)/(-a*c*x+c)^(3/2),x, algorithm="maxima" 
)
 
output
integrate(1/((-a*c*x + c)^(3/2)*((a*x - 1)/(a*x + 1))^(3/2)), x)
 
3.3.49.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.42 \[ \int \frac {e^{3 \coth ^{-1}(a x)}}{(c-a c x)^{3/2}} \, dx=\frac {\frac {3 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {-a c x - c}}{2 \, \sqrt {c}}\right )}{\sqrt {c}} - \frac {2 \, {\left (5 \, {\left (-a c x - c\right )}^{\frac {3}{2}} + 6 \, \sqrt {-a c x - c} c\right )}}{{\left (a c x - c\right )}^{2}}}{8 \, a {\left | c \right |}} \]

input
integrate(1/((a*x-1)/(a*x+1))^(3/2)/(-a*c*x+c)^(3/2),x, algorithm="giac")
 
output
1/8*(3*sqrt(2)*arctan(1/2*sqrt(2)*sqrt(-a*c*x - c)/sqrt(c))/sqrt(c) - 2*(5 
*(-a*c*x - c)^(3/2) + 6*sqrt(-a*c*x - c)*c)/(a*c*x - c)^2)/(a*abs(c))
 
3.3.49.9 Mupad [F(-1)]

Timed out. \[ \int \frac {e^{3 \coth ^{-1}(a x)}}{(c-a c x)^{3/2}} \, dx=\int \frac {1}{{\left (c-a\,c\,x\right )}^{3/2}\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2}} \,d x \]

input
int(1/((c - a*c*x)^(3/2)*((a*x - 1)/(a*x + 1))^(3/2)),x)
 
output
int(1/((c - a*c*x)^(3/2)*((a*x - 1)/(a*x + 1))^(3/2)), x)