3.3.61 \(\int e^{-2 \coth ^{-1}(a x)} (c-a c x)^{7/2} \, dx\) [261]

3.3.61.1 Optimal result
3.3.61.2 Mathematica [A] (verified)
3.3.61.3 Rubi [A] (verified)
3.3.61.4 Maple [A] (verified)
3.3.61.5 Fricas [A] (verification not implemented)
3.3.61.6 Sympy [A] (verification not implemented)
3.3.61.7 Maxima [A] (verification not implemented)
3.3.61.8 Giac [A] (verification not implemented)
3.3.61.9 Mupad [B] (verification not implemented)

3.3.61.1 Optimal result

Integrand size = 20, antiderivative size = 137 \[ \int e^{-2 \coth ^{-1}(a x)} (c-a c x)^{7/2} \, dx=-\frac {32 c^3 \sqrt {c-a c x}}{a}-\frac {16 c^2 (c-a c x)^{3/2}}{3 a}-\frac {8 c (c-a c x)^{5/2}}{5 a}-\frac {4 (c-a c x)^{7/2}}{7 a}-\frac {2 (c-a c x)^{9/2}}{9 a c}+\frac {32 \sqrt {2} c^{7/2} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {2} \sqrt {c}}\right )}{a} \]

output
-16/3*c^2*(-a*c*x+c)^(3/2)/a-8/5*c*(-a*c*x+c)^(5/2)/a-4/7*(-a*c*x+c)^(7/2) 
/a-2/9*(-a*c*x+c)^(9/2)/a/c+32*c^(7/2)*arctanh(1/2*(-a*c*x+c)^(1/2)*2^(1/2 
)/c^(1/2))*2^(1/2)/a-32*c^3*(-a*c*x+c)^(1/2)/a
 
3.3.61.2 Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.64 \[ \int e^{-2 \coth ^{-1}(a x)} (c-a c x)^{7/2} \, dx=\frac {2 c^3 \left (\sqrt {c-a c x} \left (-6257+1754 a x-732 a^2 x^2+230 a^3 x^3-35 a^4 x^4\right )+5040 \sqrt {2} \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {2} \sqrt {c}}\right )\right )}{315 a} \]

input
Integrate[(c - a*c*x)^(7/2)/E^(2*ArcCoth[a*x]),x]
 
output
(2*c^3*(Sqrt[c - a*c*x]*(-6257 + 1754*a*x - 732*a^2*x^2 + 230*a^3*x^3 - 35 
*a^4*x^4) + 5040*Sqrt[2]*Sqrt[c]*ArcTanh[Sqrt[c - a*c*x]/(Sqrt[2]*Sqrt[c]) 
]))/(315*a)
 
3.3.61.3 Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.08, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {6717, 6680, 35, 60, 60, 60, 60, 60, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (c-a c x)^{7/2} e^{-2 \coth ^{-1}(a x)} \, dx\)

\(\Big \downarrow \) 6717

\(\displaystyle -\int e^{-2 \text {arctanh}(a x)} (c-a c x)^{7/2}dx\)

\(\Big \downarrow \) 6680

\(\displaystyle -\int \frac {(1-a x) (c-a c x)^{7/2}}{a x+1}dx\)

\(\Big \downarrow \) 35

\(\displaystyle -\frac {\int \frac {(c-a c x)^{9/2}}{a x+1}dx}{c}\)

\(\Big \downarrow \) 60

\(\displaystyle -\frac {2 c \int \frac {(c-a c x)^{7/2}}{a x+1}dx+\frac {2 (c-a c x)^{9/2}}{9 a}}{c}\)

\(\Big \downarrow \) 60

\(\displaystyle -\frac {2 c \left (2 c \int \frac {(c-a c x)^{5/2}}{a x+1}dx+\frac {2 (c-a c x)^{7/2}}{7 a}\right )+\frac {2 (c-a c x)^{9/2}}{9 a}}{c}\)

\(\Big \downarrow \) 60

\(\displaystyle -\frac {2 c \left (2 c \left (2 c \int \frac {(c-a c x)^{3/2}}{a x+1}dx+\frac {2 (c-a c x)^{5/2}}{5 a}\right )+\frac {2 (c-a c x)^{7/2}}{7 a}\right )+\frac {2 (c-a c x)^{9/2}}{9 a}}{c}\)

\(\Big \downarrow \) 60

\(\displaystyle -\frac {2 c \left (2 c \left (2 c \left (2 c \int \frac {\sqrt {c-a c x}}{a x+1}dx+\frac {2 (c-a c x)^{3/2}}{3 a}\right )+\frac {2 (c-a c x)^{5/2}}{5 a}\right )+\frac {2 (c-a c x)^{7/2}}{7 a}\right )+\frac {2 (c-a c x)^{9/2}}{9 a}}{c}\)

\(\Big \downarrow \) 60

\(\displaystyle -\frac {2 c \left (2 c \left (2 c \left (2 c \left (2 c \int \frac {1}{(a x+1) \sqrt {c-a c x}}dx+\frac {2 \sqrt {c-a c x}}{a}\right )+\frac {2 (c-a c x)^{3/2}}{3 a}\right )+\frac {2 (c-a c x)^{5/2}}{5 a}\right )+\frac {2 (c-a c x)^{7/2}}{7 a}\right )+\frac {2 (c-a c x)^{9/2}}{9 a}}{c}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {2 c \left (2 c \left (2 c \left (2 c \left (\frac {2 \sqrt {c-a c x}}{a}-\frac {4 \int \frac {1}{2-\frac {c-a c x}{c}}d\sqrt {c-a c x}}{a}\right )+\frac {2 (c-a c x)^{3/2}}{3 a}\right )+\frac {2 (c-a c x)^{5/2}}{5 a}\right )+\frac {2 (c-a c x)^{7/2}}{7 a}\right )+\frac {2 (c-a c x)^{9/2}}{9 a}}{c}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {2 c \left (2 c \left (2 c \left (2 c \left (\frac {2 \sqrt {c-a c x}}{a}-\frac {2 \sqrt {2} \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {2} \sqrt {c}}\right )}{a}\right )+\frac {2 (c-a c x)^{3/2}}{3 a}\right )+\frac {2 (c-a c x)^{5/2}}{5 a}\right )+\frac {2 (c-a c x)^{7/2}}{7 a}\right )+\frac {2 (c-a c x)^{9/2}}{9 a}}{c}\)

input
Int[(c - a*c*x)^(7/2)/E^(2*ArcCoth[a*x]),x]
 
output
-(((2*(c - a*c*x)^(9/2))/(9*a) + 2*c*((2*(c - a*c*x)^(7/2))/(7*a) + 2*c*(( 
2*(c - a*c*x)^(5/2))/(5*a) + 2*c*((2*(c - a*c*x)^(3/2))/(3*a) + 2*c*((2*Sq 
rt[c - a*c*x])/a - (2*Sqrt[2]*Sqrt[c]*ArcTanh[Sqrt[c - a*c*x]/(Sqrt[2]*Sqr 
t[c])])/a)))))/c)
 

3.3.61.3.1 Defintions of rubi rules used

rule 35
Int[(u_.)*((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.), x_Symbol] :> 
 Simp[(b/d)^m   Int[u*(c + d*x)^(m + n), x], x] /; FreeQ[{a, b, c, d, m, n} 
, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] &&  !(IntegerQ[n] && SimplerQ[a + 
b*x, c + d*x])
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 6680
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol 
] :> Int[u*(c + d*x)^p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x] /; FreeQ[{a, c 
, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !(IntegerQ[p] || GtQ[c, 0])
 

rule 6717
Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Simp[(-1)^(n/2)   Int[ 
u*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[a, x] && IntegerQ[n/2]
 
3.3.61.4 Maple [A] (verified)

Time = 0.57 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.57

method result size
pseudoelliptic \(\frac {32 \left (\sqrt {c}\, \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {-c \left (a x -1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right )-\frac {\left (35 a^{4} x^{4}-230 a^{3} x^{3}+732 a^{2} x^{2}-1754 a x +6257\right ) \sqrt {-c \left (a x -1\right )}}{5040}\right ) c^{3}}{a}\) \(78\)
risch \(\frac {2 \left (35 a^{4} x^{4}-230 a^{3} x^{3}+732 a^{2} x^{2}-1754 a x +6257\right ) \left (a x -1\right ) c^{4}}{315 a \sqrt {-c \left (a x -1\right )}}+\frac {32 c^{\frac {7}{2}} \operatorname {arctanh}\left (\frac {\sqrt {-a c x +c}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sqrt {2}}{a}\) \(84\)
derivativedivides \(-\frac {2 \left (\frac {\left (-a c x +c \right )^{\frac {9}{2}}}{9}+\frac {2 c \left (-a c x +c \right )^{\frac {7}{2}}}{7}+\frac {4 c^{2} \left (-a c x +c \right )^{\frac {5}{2}}}{5}+\frac {8 c^{3} \left (-a c x +c \right )^{\frac {3}{2}}}{3}+16 c^{4} \sqrt {-a c x +c}-16 c^{\frac {9}{2}} \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {-a c x +c}\, \sqrt {2}}{2 \sqrt {c}}\right )\right )}{c a}\) \(101\)
default \(\frac {-\frac {2 \left (-a c x +c \right )^{\frac {9}{2}}}{9}-\frac {4 c \left (-a c x +c \right )^{\frac {7}{2}}}{7}-\frac {8 c^{2} \left (-a c x +c \right )^{\frac {5}{2}}}{5}-\frac {16 c^{3} \left (-a c x +c \right )^{\frac {3}{2}}}{3}-32 c^{4} \sqrt {-a c x +c}+32 c^{\frac {9}{2}} \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {-a c x +c}\, \sqrt {2}}{2 \sqrt {c}}\right )}{a c}\) \(101\)

input
int((-a*c*x+c)^(7/2)*(a*x-1)/(a*x+1),x,method=_RETURNVERBOSE)
 
output
32*(c^(1/2)*2^(1/2)*arctanh(1/2*(-c*(a*x-1))^(1/2)*2^(1/2)/c^(1/2))-1/5040 
*(35*a^4*x^4-230*a^3*x^3+732*a^2*x^2-1754*a*x+6257)*(-c*(a*x-1))^(1/2))*c^ 
3/a
 
3.3.61.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.49 \[ \int e^{-2 \coth ^{-1}(a x)} (c-a c x)^{7/2} \, dx=\left [\frac {2 \, {\left (2520 \, \sqrt {2} c^{\frac {7}{2}} \log \left (\frac {a c x - 2 \, \sqrt {2} \sqrt {-a c x + c} \sqrt {c} - 3 \, c}{a x + 1}\right ) - {\left (35 \, a^{4} c^{3} x^{4} - 230 \, a^{3} c^{3} x^{3} + 732 \, a^{2} c^{3} x^{2} - 1754 \, a c^{3} x + 6257 \, c^{3}\right )} \sqrt {-a c x + c}\right )}}{315 \, a}, -\frac {2 \, {\left (5040 \, \sqrt {2} \sqrt {-c} c^{3} \arctan \left (\frac {\sqrt {2} \sqrt {-a c x + c} \sqrt {-c}}{2 \, c}\right ) + {\left (35 \, a^{4} c^{3} x^{4} - 230 \, a^{3} c^{3} x^{3} + 732 \, a^{2} c^{3} x^{2} - 1754 \, a c^{3} x + 6257 \, c^{3}\right )} \sqrt {-a c x + c}\right )}}{315 \, a}\right ] \]

input
integrate((-a*c*x+c)^(7/2)*(a*x-1)/(a*x+1),x, algorithm="fricas")
 
output
[2/315*(2520*sqrt(2)*c^(7/2)*log((a*c*x - 2*sqrt(2)*sqrt(-a*c*x + c)*sqrt( 
c) - 3*c)/(a*x + 1)) - (35*a^4*c^3*x^4 - 230*a^3*c^3*x^3 + 732*a^2*c^3*x^2 
 - 1754*a*c^3*x + 6257*c^3)*sqrt(-a*c*x + c))/a, -2/315*(5040*sqrt(2)*sqrt 
(-c)*c^3*arctan(1/2*sqrt(2)*sqrt(-a*c*x + c)*sqrt(-c)/c) + (35*a^4*c^3*x^4 
 - 230*a^3*c^3*x^3 + 732*a^2*c^3*x^2 - 1754*a*c^3*x + 6257*c^3)*sqrt(-a*c* 
x + c))/a]
 
3.3.61.6 Sympy [A] (verification not implemented)

Time = 2.90 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.09 \[ \int e^{-2 \coth ^{-1}(a x)} (c-a c x)^{7/2} \, dx=\begin {cases} - \frac {2 \cdot \left (\frac {16 \sqrt {2} c^{5} \operatorname {atan}{\left (\frac {\sqrt {2} \sqrt {- a c x + c}}{2 \sqrt {- c}} \right )}}{\sqrt {- c}} + 16 c^{4} \sqrt {- a c x + c} + \frac {8 c^{3} \left (- a c x + c\right )^{\frac {3}{2}}}{3} + \frac {4 c^{2} \left (- a c x + c\right )^{\frac {5}{2}}}{5} + \frac {2 c \left (- a c x + c\right )^{\frac {7}{2}}}{7} + \frac {\left (- a c x + c\right )^{\frac {9}{2}}}{9}\right )}{a c} & \text {for}\: a c \neq 0 \\c^{\frac {7}{2}} \left (\begin {cases} - x & \text {for}\: a = 0 \\\frac {a x - 2 \log {\left (a x + 1 \right )} + 1}{a} & \text {otherwise} \end {cases}\right ) & \text {otherwise} \end {cases} \]

input
integrate((-a*c*x+c)**(7/2)*(a*x-1)/(a*x+1),x)
 
output
Piecewise((-2*(16*sqrt(2)*c**5*atan(sqrt(2)*sqrt(-a*c*x + c)/(2*sqrt(-c))) 
/sqrt(-c) + 16*c**4*sqrt(-a*c*x + c) + 8*c**3*(-a*c*x + c)**(3/2)/3 + 4*c* 
*2*(-a*c*x + c)**(5/2)/5 + 2*c*(-a*c*x + c)**(7/2)/7 + (-a*c*x + c)**(9/2) 
/9)/(a*c), Ne(a*c, 0)), (c**(7/2)*Piecewise((-x, Eq(a, 0)), ((a*x - 2*log( 
a*x + 1) + 1)/a, True)), True))
 
3.3.61.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.90 \[ \int e^{-2 \coth ^{-1}(a x)} (c-a c x)^{7/2} \, dx=-\frac {2 \, {\left (2520 \, \sqrt {2} c^{\frac {9}{2}} \log \left (-\frac {\sqrt {2} \sqrt {c} - \sqrt {-a c x + c}}{\sqrt {2} \sqrt {c} + \sqrt {-a c x + c}}\right ) + 35 \, {\left (-a c x + c\right )}^{\frac {9}{2}} + 90 \, {\left (-a c x + c\right )}^{\frac {7}{2}} c + 252 \, {\left (-a c x + c\right )}^{\frac {5}{2}} c^{2} + 840 \, {\left (-a c x + c\right )}^{\frac {3}{2}} c^{3} + 5040 \, \sqrt {-a c x + c} c^{4}\right )}}{315 \, a c} \]

input
integrate((-a*c*x+c)^(7/2)*(a*x-1)/(a*x+1),x, algorithm="maxima")
 
output
-2/315*(2520*sqrt(2)*c^(9/2)*log(-(sqrt(2)*sqrt(c) - sqrt(-a*c*x + c))/(sq 
rt(2)*sqrt(c) + sqrt(-a*c*x + c))) + 35*(-a*c*x + c)^(9/2) + 90*(-a*c*x + 
c)^(7/2)*c + 252*(-a*c*x + c)^(5/2)*c^2 + 840*(-a*c*x + c)^(3/2)*c^3 + 504 
0*sqrt(-a*c*x + c)*c^4)/(a*c)
 
3.3.61.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.18 \[ \int e^{-2 \coth ^{-1}(a x)} (c-a c x)^{7/2} \, dx=-\frac {32 \, \sqrt {2} c^{4} \arctan \left (\frac {\sqrt {2} \sqrt {-a c x + c}}{2 \, \sqrt {-c}}\right )}{a \sqrt {-c}} - \frac {2 \, {\left (35 \, {\left (a c x - c\right )}^{4} \sqrt {-a c x + c} a^{8} c^{8} - 90 \, {\left (a c x - c\right )}^{3} \sqrt {-a c x + c} a^{8} c^{9} + 252 \, {\left (a c x - c\right )}^{2} \sqrt {-a c x + c} a^{8} c^{10} + 840 \, {\left (-a c x + c\right )}^{\frac {3}{2}} a^{8} c^{11} + 5040 \, \sqrt {-a c x + c} a^{8} c^{12}\right )}}{315 \, a^{9} c^{9}} \]

input
integrate((-a*c*x+c)^(7/2)*(a*x-1)/(a*x+1),x, algorithm="giac")
 
output
-32*sqrt(2)*c^4*arctan(1/2*sqrt(2)*sqrt(-a*c*x + c)/sqrt(-c))/(a*sqrt(-c)) 
 - 2/315*(35*(a*c*x - c)^4*sqrt(-a*c*x + c)*a^8*c^8 - 90*(a*c*x - c)^3*sqr 
t(-a*c*x + c)*a^8*c^9 + 252*(a*c*x - c)^2*sqrt(-a*c*x + c)*a^8*c^10 + 840* 
(-a*c*x + c)^(3/2)*a^8*c^11 + 5040*sqrt(-a*c*x + c)*a^8*c^12)/(a^9*c^9)
 
3.3.61.9 Mupad [B] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.82 \[ \int e^{-2 \coth ^{-1}(a x)} (c-a c x)^{7/2} \, dx=-\frac {4\,{\left (c-a\,c\,x\right )}^{7/2}}{7\,a}-\frac {8\,c\,{\left (c-a\,c\,x\right )}^{5/2}}{5\,a}-\frac {32\,c^3\,\sqrt {c-a\,c\,x}}{a}-\frac {16\,c^2\,{\left (c-a\,c\,x\right )}^{3/2}}{3\,a}-\frac {2\,{\left (c-a\,c\,x\right )}^{9/2}}{9\,a\,c}-\frac {\sqrt {2}\,c^{7/2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {c-a\,c\,x}\,1{}\mathrm {i}}{2\,\sqrt {c}}\right )\,32{}\mathrm {i}}{a} \]

input
int(((c - a*c*x)^(7/2)*(a*x - 1))/(a*x + 1),x)
 
output
- (4*(c - a*c*x)^(7/2))/(7*a) - (8*c*(c - a*c*x)^(5/2))/(5*a) - (32*c^3*(c 
 - a*c*x)^(1/2))/a - (16*c^2*(c - a*c*x)^(3/2))/(3*a) - (2*(c - a*c*x)^(9/ 
2))/(9*a*c) - (2^(1/2)*c^(7/2)*atan((2^(1/2)*(c - a*c*x)^(1/2)*1i)/(2*c^(1 
/2)))*32i)/a