3.4.32 \(\int \frac {e^{\coth ^{-1}(x)}}{(1+x)^{3/2}} \, dx\) [332]

3.4.32.1 Optimal result
3.4.32.2 Mathematica [A] (warning: unable to verify)
3.4.32.3 Rubi [A] (verified)
3.4.32.4 Maple [A] (verified)
3.4.32.5 Fricas [A] (verification not implemented)
3.4.32.6 Sympy [A] (verification not implemented)
3.4.32.7 Maxima [F]
3.4.32.8 Giac [F(-2)]
3.4.32.9 Mupad [F(-1)]

3.4.32.1 Optimal result

Integrand size = 12, antiderivative size = 58 \[ \int \frac {e^{\coth ^{-1}(x)}}{(1+x)^{3/2}} \, dx=-\frac {\sqrt {2} \left (1+\frac {1}{x}\right )^{3/2} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {-\frac {1-x}{x}}}\right )}{\left (\frac {1}{x}\right )^{3/2} (1+x)^{3/2}} \]

output
-(1+1/x)^(3/2)*arctan(2^(1/2)*(1/x)^(1/2)/((-1+x)/x)^(1/2))*2^(1/2)/(1/x)^ 
(3/2)/(1+x)^(3/2)
 
3.4.32.2 Mathematica [A] (warning: unable to verify)

Time = 0.02 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.71 \[ \int \frac {e^{\coth ^{-1}(x)}}{(1+x)^{3/2}} \, dx=\sqrt {2} \sqrt {\frac {1}{1+x}} \sqrt {1+x} \arctan \left (\frac {\sqrt {\frac {-1+x}{x^2}} x}{\sqrt {2}}\right ) \]

input
Integrate[E^ArcCoth[x]/(1 + x)^(3/2),x]
 
output
Sqrt[2]*Sqrt[(1 + x)^(-1)]*Sqrt[1 + x]*ArcTan[(Sqrt[(-1 + x)/x^2]*x)/Sqrt[ 
2]]
 
3.4.32.3 Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 55, normalized size of antiderivative = 0.95, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {6727, 104, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{\coth ^{-1}(x)}}{(x+1)^{3/2}} \, dx\)

\(\Big \downarrow \) 6727

\(\displaystyle -\frac {\left (\frac {1}{x}+1\right )^{3/2} \int \frac {1}{\sqrt {1-\frac {1}{x}} \left (1+\frac {1}{x}\right ) \sqrt {\frac {1}{x}}}d\frac {1}{x}}{\left (\frac {1}{x}\right )^{3/2} (x+1)^{3/2}}\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {2 \left (\frac {1}{x}+1\right )^{3/2} \int \frac {1}{1+\frac {2}{x^2}}d\frac {\sqrt {\frac {1}{x}}}{\sqrt {1-\frac {1}{x}}}}{\left (\frac {1}{x}\right )^{3/2} (x+1)^{3/2}}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {\sqrt {2} \left (\frac {1}{x}+1\right )^{3/2} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {1-\frac {1}{x}}}\right )}{\left (\frac {1}{x}\right )^{3/2} (x+1)^{3/2}}\)

input
Int[E^ArcCoth[x]/(1 + x)^(3/2),x]
 
output
-((Sqrt[2]*(1 + x^(-1))^(3/2)*ArcTan[(Sqrt[2]*Sqrt[x^(-1)])/Sqrt[1 - x^(-1 
)]])/((x^(-1))^(3/2)*(1 + x)^(3/2)))
 

3.4.32.3.1 Defintions of rubi rules used

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 6727
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_), x_Symbol] :> Si 
mp[(-(1/x)^p)*((c + d*x)^p/(1 + c/(d*x))^p)   Subst[Int[((1 + c*(x/d))^p*(( 
1 + x/a)^(n/2)/x^(p + 2)))/(1 - x/a)^(n/2), x], x, 1/x], x] /; FreeQ[{a, c, 
 d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !IntegerQ[p]
 
3.4.32.4 Maple [A] (verified)

Time = 0.44 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.64

method result size
default \(\frac {\sqrt {2}\, \arctan \left (\frac {\sqrt {x -1}\, \sqrt {2}}{2}\right ) \sqrt {x -1}}{\sqrt {\frac {x -1}{1+x}}\, \sqrt {1+x}}\) \(37\)

input
int(1/((x-1)/(1+x))^(1/2)/(1+x)^(3/2),x,method=_RETURNVERBOSE)
 
output
2^(1/2)*arctan(1/2*(x-1)^(1/2)*2^(1/2))/((x-1)/(1+x))^(1/2)/(1+x)^(1/2)*(x 
-1)^(1/2)
 
3.4.32.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.45 \[ \int \frac {e^{\coth ^{-1}(x)}}{(1+x)^{3/2}} \, dx=\sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} \sqrt {x + 1} \sqrt {\frac {x - 1}{x + 1}}\right ) \]

input
integrate(1/((-1+x)/(1+x))^(1/2)/(1+x)^(3/2),x, algorithm="fricas")
 
output
sqrt(2)*arctan(1/2*sqrt(2)*sqrt(x + 1)*sqrt((x - 1)/(x + 1)))
 
3.4.32.6 Sympy [A] (verification not implemented)

Time = 40.26 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.72 \[ \int \frac {e^{\coth ^{-1}(x)}}{(1+x)^{3/2}} \, dx=2 \left (\begin {cases} \frac {\sqrt {2} \operatorname {acos}{\left (\frac {\sqrt {2}}{\sqrt {x + 1}} \right )}}{2} & \text {for}\: \sqrt {x + 1} > - \sqrt {2} \wedge \sqrt {x + 1} < \sqrt {2} \end {cases}\right ) \]

input
integrate(1/((-1+x)/(1+x))**(1/2)/(1+x)**(3/2),x)
 
output
2*Piecewise((sqrt(2)*acos(sqrt(2)/sqrt(x + 1))/2, (sqrt(x + 1) < sqrt(2)) 
& (sqrt(x + 1) > -sqrt(2))))
 
3.4.32.7 Maxima [F]

\[ \int \frac {e^{\coth ^{-1}(x)}}{(1+x)^{3/2}} \, dx=\int { \frac {1}{{\left (x + 1\right )}^{\frac {3}{2}} \sqrt {\frac {x - 1}{x + 1}}} \,d x } \]

input
integrate(1/((-1+x)/(1+x))^(1/2)/(1+x)^(3/2),x, algorithm="maxima")
 
output
integrate(1/((x + 1)^(3/2)*sqrt((x - 1)/(x + 1))), x)
 
3.4.32.8 Giac [F(-2)]

Exception generated. \[ \int \frac {e^{\coth ^{-1}(x)}}{(1+x)^{3/2}} \, dx=\text {Exception raised: NotImplementedError} \]

input
integrate(1/((-1+x)/(1+x))^(1/2)/(1+x)^(3/2),x, algorithm="giac")
 
output
Exception raised: NotImplementedError >> unable to parse Giac output: 2*(- 
1/2*sqrt(2)*atan(i)+1/2*sqrt(2)*atan(sqrt(sageVARx-1)/sqrt(2)))*sign(sageV 
ARx)/sign(sageVARx+1)
 
3.4.32.9 Mupad [F(-1)]

Timed out. \[ \int \frac {e^{\coth ^{-1}(x)}}{(1+x)^{3/2}} \, dx=\int \frac {1}{\sqrt {\frac {x-1}{x+1}}\,{\left (x+1\right )}^{3/2}} \,d x \]

input
int(1/(((x - 1)/(x + 1))^(1/2)*(x + 1)^(3/2)),x)
 
output
int(1/(((x - 1)/(x + 1))^(1/2)*(x + 1)^(3/2)), x)