3.4.48 \(\int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^4} \, dx\) [348]

3.4.48.1 Optimal result
3.4.48.2 Mathematica [A] (verified)
3.4.48.3 Rubi [A] (verified)
3.4.48.4 Maple [A] (verified)
3.4.48.5 Fricas [A] (verification not implemented)
3.4.48.6 Sympy [F]
3.4.48.7 Maxima [A] (verification not implemented)
3.4.48.8 Giac [A] (verification not implemented)
3.4.48.9 Mupad [B] (verification not implemented)

3.4.48.1 Optimal result

Integrand size = 23, antiderivative size = 127 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^4} \, dx=\frac {\sqrt {c-a c x}}{3 x^3}-\frac {13 a \sqrt {c-a c x}}{12 x^2}+\frac {19 a^2 \sqrt {c-a c x}}{8 x}-\frac {45}{8} a^3 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right )+4 \sqrt {2} a^3 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {2} \sqrt {c}}\right ) \]

output
-45/8*a^3*arctanh((-a*c*x+c)^(1/2)/c^(1/2))*c^(1/2)+4*a^3*arctanh(1/2*(-a* 
c*x+c)^(1/2)*2^(1/2)/c^(1/2))*2^(1/2)*c^(1/2)+1/3*(-a*c*x+c)^(1/2)/x^3-13/ 
12*a*(-a*c*x+c)^(1/2)/x^2+19/8*a^2*(-a*c*x+c)^(1/2)/x
 
3.4.48.2 Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.80 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^4} \, dx=\frac {\sqrt {c-a c x} \left (8-26 a x+57 a^2 x^2\right )}{24 x^3}-\frac {45}{8} a^3 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right )+4 \sqrt {2} a^3 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {2} \sqrt {c}}\right ) \]

input
Integrate[Sqrt[c - a*c*x]/(E^(2*ArcCoth[a*x])*x^4),x]
 
output
(Sqrt[c - a*c*x]*(8 - 26*a*x + 57*a^2*x^2))/(24*x^3) - (45*a^3*Sqrt[c]*Arc 
Tanh[Sqrt[c - a*c*x]/Sqrt[c]])/8 + 4*Sqrt[2]*a^3*Sqrt[c]*ArcTanh[Sqrt[c - 
a*c*x]/(Sqrt[2]*Sqrt[c])]
 
3.4.48.3 Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.15, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.565, Rules used = {6717, 6680, 35, 109, 27, 168, 27, 168, 27, 174, 73, 219, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {c-a c x} e^{-2 \coth ^{-1}(a x)}}{x^4} \, dx\)

\(\Big \downarrow \) 6717

\(\displaystyle -\int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {c-a c x}}{x^4}dx\)

\(\Big \downarrow \) 6680

\(\displaystyle -\int \frac {(1-a x) \sqrt {c-a c x}}{x^4 (a x+1)}dx\)

\(\Big \downarrow \) 35

\(\displaystyle -\frac {\int \frac {(c-a c x)^{3/2}}{x^4 (a x+1)}dx}{c}\)

\(\Big \downarrow \) 109

\(\displaystyle -\frac {-\frac {1}{3} \int \frac {a c^2 (13-11 a x)}{2 x^3 (a x+1) \sqrt {c-a c x}}dx-\frac {c \sqrt {c-a c x}}{3 x^3}}{c}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {-\frac {1}{6} a c^2 \int \frac {13-11 a x}{x^3 (a x+1) \sqrt {c-a c x}}dx-\frac {c \sqrt {c-a c x}}{3 x^3}}{c}\)

\(\Big \downarrow \) 168

\(\displaystyle -\frac {-\frac {1}{6} a c^2 \left (-\frac {\int \frac {3 a c (19-13 a x)}{2 x^2 (a x+1) \sqrt {c-a c x}}dx}{2 c}-\frac {13 \sqrt {c-a c x}}{2 c x^2}\right )-\frac {c \sqrt {c-a c x}}{3 x^3}}{c}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {-\frac {1}{6} a c^2 \left (-\frac {3}{4} a \int \frac {19-13 a x}{x^2 (a x+1) \sqrt {c-a c x}}dx-\frac {13 \sqrt {c-a c x}}{2 c x^2}\right )-\frac {c \sqrt {c-a c x}}{3 x^3}}{c}\)

\(\Big \downarrow \) 168

\(\displaystyle -\frac {-\frac {1}{6} a c^2 \left (-\frac {3}{4} a \left (-\frac {\int \frac {a c (45-19 a x)}{2 x (a x+1) \sqrt {c-a c x}}dx}{c}-\frac {19 \sqrt {c-a c x}}{c x}\right )-\frac {13 \sqrt {c-a c x}}{2 c x^2}\right )-\frac {c \sqrt {c-a c x}}{3 x^3}}{c}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {-\frac {1}{6} a c^2 \left (-\frac {3}{4} a \left (-\frac {1}{2} a \int \frac {45-19 a x}{x (a x+1) \sqrt {c-a c x}}dx-\frac {19 \sqrt {c-a c x}}{c x}\right )-\frac {13 \sqrt {c-a c x}}{2 c x^2}\right )-\frac {c \sqrt {c-a c x}}{3 x^3}}{c}\)

\(\Big \downarrow \) 174

\(\displaystyle -\frac {-\frac {1}{6} a c^2 \left (-\frac {3}{4} a \left (-\frac {1}{2} a \left (45 \int \frac {1}{x \sqrt {c-a c x}}dx-64 a \int \frac {1}{(a x+1) \sqrt {c-a c x}}dx\right )-\frac {19 \sqrt {c-a c x}}{c x}\right )-\frac {13 \sqrt {c-a c x}}{2 c x^2}\right )-\frac {c \sqrt {c-a c x}}{3 x^3}}{c}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {-\frac {1}{6} a c^2 \left (-\frac {3}{4} a \left (-\frac {1}{2} a \left (\frac {128 \int \frac {1}{2-\frac {c-a c x}{c}}d\sqrt {c-a c x}}{c}-\frac {90 \int \frac {1}{\frac {1}{a}-\frac {c-a c x}{a c}}d\sqrt {c-a c x}}{a c}\right )-\frac {19 \sqrt {c-a c x}}{c x}\right )-\frac {13 \sqrt {c-a c x}}{2 c x^2}\right )-\frac {c \sqrt {c-a c x}}{3 x^3}}{c}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {-\frac {1}{6} a c^2 \left (-\frac {3}{4} a \left (-\frac {1}{2} a \left (\frac {64 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {2} \sqrt {c}}\right )}{\sqrt {c}}-\frac {90 \int \frac {1}{\frac {1}{a}-\frac {c-a c x}{a c}}d\sqrt {c-a c x}}{a c}\right )-\frac {19 \sqrt {c-a c x}}{c x}\right )-\frac {13 \sqrt {c-a c x}}{2 c x^2}\right )-\frac {c \sqrt {c-a c x}}{3 x^3}}{c}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {-\frac {1}{6} a c^2 \left (-\frac {3}{4} a \left (-\frac {1}{2} a \left (\frac {64 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {2} \sqrt {c}}\right )}{\sqrt {c}}-\frac {90 \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right )}{\sqrt {c}}\right )-\frac {19 \sqrt {c-a c x}}{c x}\right )-\frac {13 \sqrt {c-a c x}}{2 c x^2}\right )-\frac {c \sqrt {c-a c x}}{3 x^3}}{c}\)

input
Int[Sqrt[c - a*c*x]/(E^(2*ArcCoth[a*x])*x^4),x]
 
output
-((-1/3*(c*Sqrt[c - a*c*x])/x^3 - (a*c^2*((-13*Sqrt[c - a*c*x])/(2*c*x^2) 
- (3*a*((-19*Sqrt[c - a*c*x])/(c*x) - (a*((-90*ArcTanh[Sqrt[c - a*c*x]/Sqr 
t[c]])/Sqrt[c] + (64*Sqrt[2]*ArcTanh[Sqrt[c - a*c*x]/(Sqrt[2]*Sqrt[c])])/S 
qrt[c]))/2))/4))/6)/c)
 

3.4.48.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 35
Int[(u_.)*((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.), x_Symbol] :> 
 Simp[(b/d)^m   Int[u*(c + d*x)^(m + n), x], x] /; FreeQ[{a, b, c, d, m, n} 
, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] &&  !(IntegerQ[n] && SimplerQ[a + 
b*x, c + d*x])
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 168
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 6680
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol 
] :> Int[u*(c + d*x)^p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x] /; FreeQ[{a, c 
, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !(IntegerQ[p] || GtQ[c, 0])
 

rule 6717
Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Simp[(-1)^(n/2)   Int[ 
u*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[a, x] && IntegerQ[n/2]
 
3.4.48.4 Maple [A] (verified)

Time = 0.59 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.70

method result size
pseudoelliptic \(\frac {\frac {\sqrt {-c \left (a x -1\right )}\, \left (57 a^{2} x^{2}-26 a x +8\right ) \sqrt {c}}{3}+a^{3} c \,x^{3} \left (32 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {-c \left (a x -1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right )-45 \,\operatorname {arctanh}\left (\frac {\sqrt {-c \left (a x -1\right )}}{\sqrt {c}}\right )\right )}{8 \sqrt {c}\, x^{3}}\) \(89\)
risch \(-\frac {\left (57 a^{3} x^{3}-83 a^{2} x^{2}+34 a x -8\right ) c}{24 x^{3} \sqrt {-c \left (a x -1\right )}}+\frac {a^{3} \left (-\frac {90 \,\operatorname {arctanh}\left (\frac {\sqrt {-a c x +c}}{\sqrt {c}}\right )}{\sqrt {c}}+\frac {64 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {-a c x +c}\, \sqrt {2}}{2 \sqrt {c}}\right )}{\sqrt {c}}\right ) c}{16}\) \(92\)
derivativedivides \(-2 c^{3} a^{3} \left (-\frac {2 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {-a c x +c}\, \sqrt {2}}{2 \sqrt {c}}\right )}{c^{\frac {5}{2}}}+\frac {\frac {-\frac {19 \left (-a c x +c \right )^{\frac {5}{2}}}{16}+\frac {11 c \left (-a c x +c \right )^{\frac {3}{2}}}{6}-\frac {13 c^{2} \sqrt {-a c x +c}}{16}}{a^{3} c^{3} x^{3}}+\frac {45 \,\operatorname {arctanh}\left (\frac {\sqrt {-a c x +c}}{\sqrt {c}}\right )}{16 \sqrt {c}}}{c^{2}}\right )\) \(108\)
default \(2 c^{3} a^{3} \left (\frac {2 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {-a c x +c}\, \sqrt {2}}{2 \sqrt {c}}\right )}{c^{\frac {5}{2}}}-\frac {\frac {-\frac {19 \left (-a c x +c \right )^{\frac {5}{2}}}{16}+\frac {11 c \left (-a c x +c \right )^{\frac {3}{2}}}{6}-\frac {13 c^{2} \sqrt {-a c x +c}}{16}}{a^{3} c^{3} x^{3}}+\frac {45 \,\operatorname {arctanh}\left (\frac {\sqrt {-a c x +c}}{\sqrt {c}}\right )}{16 \sqrt {c}}}{c^{2}}\right )\) \(109\)

input
int((-a*c*x+c)^(1/2)*(a*x-1)/(a*x+1)/x^4,x,method=_RETURNVERBOSE)
 
output
1/8/c^(1/2)*(1/3*(-c*(a*x-1))^(1/2)*(57*a^2*x^2-26*a*x+8)*c^(1/2)+a^3*c*x^ 
3*(32*2^(1/2)*arctanh(1/2*(-c*(a*x-1))^(1/2)*2^(1/2)/c^(1/2))-45*arctanh(( 
-c*(a*x-1))^(1/2)/c^(1/2))))/x^3
 
3.4.48.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.73 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^4} \, dx=\left [\frac {96 \, \sqrt {2} a^{3} \sqrt {c} x^{3} \log \left (\frac {a c x - 2 \, \sqrt {2} \sqrt {-a c x + c} \sqrt {c} - 3 \, c}{a x + 1}\right ) + 135 \, a^{3} \sqrt {c} x^{3} \log \left (\frac {a c x + 2 \, \sqrt {-a c x + c} \sqrt {c} - 2 \, c}{x}\right ) + 2 \, {\left (57 \, a^{2} x^{2} - 26 \, a x + 8\right )} \sqrt {-a c x + c}}{48 \, x^{3}}, -\frac {96 \, \sqrt {2} a^{3} \sqrt {-c} x^{3} \arctan \left (\frac {\sqrt {2} \sqrt {-a c x + c} \sqrt {-c}}{2 \, c}\right ) - 135 \, a^{3} \sqrt {-c} x^{3} \arctan \left (\frac {\sqrt {-a c x + c} \sqrt {-c}}{c}\right ) - {\left (57 \, a^{2} x^{2} - 26 \, a x + 8\right )} \sqrt {-a c x + c}}{24 \, x^{3}}\right ] \]

input
integrate((-a*c*x+c)^(1/2)*(a*x-1)/(a*x+1)/x^4,x, algorithm="fricas")
 
output
[1/48*(96*sqrt(2)*a^3*sqrt(c)*x^3*log((a*c*x - 2*sqrt(2)*sqrt(-a*c*x + c)* 
sqrt(c) - 3*c)/(a*x + 1)) + 135*a^3*sqrt(c)*x^3*log((a*c*x + 2*sqrt(-a*c*x 
 + c)*sqrt(c) - 2*c)/x) + 2*(57*a^2*x^2 - 26*a*x + 8)*sqrt(-a*c*x + c))/x^ 
3, -1/24*(96*sqrt(2)*a^3*sqrt(-c)*x^3*arctan(1/2*sqrt(2)*sqrt(-a*c*x + c)* 
sqrt(-c)/c) - 135*a^3*sqrt(-c)*x^3*arctan(sqrt(-a*c*x + c)*sqrt(-c)/c) - ( 
57*a^2*x^2 - 26*a*x + 8)*sqrt(-a*c*x + c))/x^3]
 
3.4.48.6 Sympy [F]

\[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^4} \, dx=\int \frac {\sqrt {- c \left (a x - 1\right )} \left (a x - 1\right )}{x^{4} \left (a x + 1\right )}\, dx \]

input
integrate((-a*c*x+c)**(1/2)*(a*x-1)/(a*x+1)/x**4,x)
 
output
Integral(sqrt(-c*(a*x - 1))*(a*x - 1)/(x**4*(a*x + 1)), x)
 
3.4.48.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.44 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^4} \, dx=\frac {1}{48} \, a^{3} c^{3} {\left (\frac {2 \, {\left (57 \, {\left (-a c x + c\right )}^{\frac {5}{2}} - 88 \, {\left (-a c x + c\right )}^{\frac {3}{2}} c + 39 \, \sqrt {-a c x + c} c^{2}\right )}}{{\left (a c x - c\right )}^{3} c^{2} + 3 \, {\left (a c x - c\right )}^{2} c^{3} + 3 \, {\left (a c x - c\right )} c^{4} + c^{5}} - \frac {96 \, \sqrt {2} \log \left (-\frac {\sqrt {2} \sqrt {c} - \sqrt {-a c x + c}}{\sqrt {2} \sqrt {c} + \sqrt {-a c x + c}}\right )}{c^{\frac {5}{2}}} + \frac {135 \, \log \left (\frac {\sqrt {-a c x + c} - \sqrt {c}}{\sqrt {-a c x + c} + \sqrt {c}}\right )}{c^{\frac {5}{2}}}\right )} \]

input
integrate((-a*c*x+c)^(1/2)*(a*x-1)/(a*x+1)/x^4,x, algorithm="maxima")
 
output
1/48*a^3*c^3*(2*(57*(-a*c*x + c)^(5/2) - 88*(-a*c*x + c)^(3/2)*c + 39*sqrt 
(-a*c*x + c)*c^2)/((a*c*x - c)^3*c^2 + 3*(a*c*x - c)^2*c^3 + 3*(a*c*x - c) 
*c^4 + c^5) - 96*sqrt(2)*log(-(sqrt(2)*sqrt(c) - sqrt(-a*c*x + c))/(sqrt(2 
)*sqrt(c) + sqrt(-a*c*x + c)))/c^(5/2) + 135*log((sqrt(-a*c*x + c) - sqrt( 
c))/(sqrt(-a*c*x + c) + sqrt(c)))/c^(5/2))
 
3.4.48.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.05 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^4} \, dx=-\frac {4 \, \sqrt {2} a^{3} c \arctan \left (\frac {\sqrt {2} \sqrt {-a c x + c}}{2 \, \sqrt {-c}}\right )}{\sqrt {-c}} + \frac {45 \, a^{3} c \arctan \left (\frac {\sqrt {-a c x + c}}{\sqrt {-c}}\right )}{8 \, \sqrt {-c}} + \frac {57 \, {\left (a c x - c\right )}^{2} \sqrt {-a c x + c} a^{3} c - 88 \, {\left (-a c x + c\right )}^{\frac {3}{2}} a^{3} c^{2} + 39 \, \sqrt {-a c x + c} a^{3} c^{3}}{24 \, a^{3} c^{3} x^{3}} \]

input
integrate((-a*c*x+c)^(1/2)*(a*x-1)/(a*x+1)/x^4,x, algorithm="giac")
 
output
-4*sqrt(2)*a^3*c*arctan(1/2*sqrt(2)*sqrt(-a*c*x + c)/sqrt(-c))/sqrt(-c) + 
45/8*a^3*c*arctan(sqrt(-a*c*x + c)/sqrt(-c))/sqrt(-c) + 1/24*(57*(a*c*x - 
c)^2*sqrt(-a*c*x + c)*a^3*c - 88*(-a*c*x + c)^(3/2)*a^3*c^2 + 39*sqrt(-a*c 
*x + c)*a^3*c^3)/(a^3*c^3*x^3)
 
3.4.48.9 Mupad [B] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 105, normalized size of antiderivative = 0.83 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^4} \, dx=\frac {13\,\sqrt {c-a\,c\,x}}{8\,x^3}+\frac {a^3\,\sqrt {c}\,\mathrm {atan}\left (\frac {\sqrt {c-a\,c\,x}\,1{}\mathrm {i}}{\sqrt {c}}\right )\,45{}\mathrm {i}}{8}-\frac {11\,{\left (c-a\,c\,x\right )}^{3/2}}{3\,c\,x^3}+\frac {19\,{\left (c-a\,c\,x\right )}^{5/2}}{8\,c^2\,x^3}-\sqrt {2}\,a^3\,\sqrt {c}\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {c-a\,c\,x}\,1{}\mathrm {i}}{2\,\sqrt {c}}\right )\,4{}\mathrm {i} \]

input
int(((c - a*c*x)^(1/2)*(a*x - 1))/(x^4*(a*x + 1)),x)
 
output
(13*(c - a*c*x)^(1/2))/(8*x^3) + (a^3*c^(1/2)*atan(((c - a*c*x)^(1/2)*1i)/ 
c^(1/2))*45i)/8 - (11*(c - a*c*x)^(3/2))/(3*c*x^3) + (19*(c - a*c*x)^(5/2) 
)/(8*c^2*x^3) - 2^(1/2)*a^3*c^(1/2)*atan((2^(1/2)*(c - a*c*x)^(1/2)*1i)/(2 
*c^(1/2)))*4i