3.5.73 \(\int e^{-2 \coth ^{-1}(a x)} (c-\frac {c}{a x})^{3/2} \, dx\) [473]

3.5.73.1 Optimal result
3.5.73.2 Mathematica [A] (verified)
3.5.73.3 Rubi [A] (verified)
3.5.73.4 Maple [B] (verified)
3.5.73.5 Fricas [A] (verification not implemented)
3.5.73.6 Sympy [F]
3.5.73.7 Maxima [F]
3.5.73.8 Giac [F(-2)]
3.5.73.9 Mupad [F(-1)]

3.5.73.1 Optimal result

Integrand size = 24, antiderivative size = 113 \[ \int e^{-2 \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^{3/2} \, dx=-\frac {c \sqrt {c-\frac {c}{a x}}}{a}+\left (c-\frac {c}{a x}\right )^{3/2} x-\frac {7 c^{3/2} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {c}}\right )}{a}+\frac {8 \sqrt {2} c^{3/2} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {2} \sqrt {c}}\right )}{a} \]

output
(c-c/a/x)^(3/2)*x-7*c^(3/2)*arctanh((c-c/a/x)^(1/2)/c^(1/2))/a+8*c^(3/2)*a 
rctanh(1/2*(c-c/a/x)^(1/2)*2^(1/2)/c^(1/2))*2^(1/2)/a-c*(c-c/a/x)^(1/2)/a
 
3.5.73.2 Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.84 \[ \int e^{-2 \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^{3/2} \, dx=\frac {c \sqrt {c-\frac {c}{a x}} (-2+a x)-7 c^{3/2} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {c}}\right )+8 \sqrt {2} c^{3/2} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {2} \sqrt {c}}\right )}{a} \]

input
Integrate[(c - c/(a*x))^(3/2)/E^(2*ArcCoth[a*x]),x]
 
output
(c*Sqrt[c - c/(a*x)]*(-2 + a*x) - 7*c^(3/2)*ArcTanh[Sqrt[c - c/(a*x)]/Sqrt 
[c]] + 8*Sqrt[2]*c^(3/2)*ArcTanh[Sqrt[c - c/(a*x)]/(Sqrt[2]*Sqrt[c])])/a
 
3.5.73.3 Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.13, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {6717, 6683, 1035, 281, 899, 109, 27, 171, 27, 174, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (c-\frac {c}{a x}\right )^{3/2} e^{-2 \coth ^{-1}(a x)} \, dx\)

\(\Big \downarrow \) 6717

\(\displaystyle -\int e^{-2 \text {arctanh}(a x)} \left (c-\frac {c}{a x}\right )^{3/2}dx\)

\(\Big \downarrow \) 6683

\(\displaystyle -\int \frac {\left (c-\frac {c}{a x}\right )^{3/2} (1-a x)}{a x+1}dx\)

\(\Big \downarrow \) 1035

\(\displaystyle -\int \frac {\left (\frac {1}{x}-a\right ) \left (c-\frac {c}{a x}\right )^{3/2}}{a+\frac {1}{x}}dx\)

\(\Big \downarrow \) 281

\(\displaystyle \frac {a \int \frac {\left (c-\frac {c}{a x}\right )^{5/2}}{a+\frac {1}{x}}dx}{c}\)

\(\Big \downarrow \) 899

\(\displaystyle -\frac {a \int \frac {\left (c-\frac {c}{a x}\right )^{5/2} x^2}{a+\frac {1}{x}}d\frac {1}{x}}{c}\)

\(\Big \downarrow \) 109

\(\displaystyle -\frac {a \left (-\frac {\int \frac {c^2 \left (7 a-\frac {1}{x}\right ) \sqrt {c-\frac {c}{a x}} x}{2 a \left (a+\frac {1}{x}\right )}d\frac {1}{x}}{a}-\frac {c x \left (c-\frac {c}{a x}\right )^{3/2}}{a}\right )}{c}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a \left (-\frac {c^2 \int \frac {\left (7 a-\frac {1}{x}\right ) \sqrt {c-\frac {c}{a x}} x}{a+\frac {1}{x}}d\frac {1}{x}}{2 a^2}-\frac {c x \left (c-\frac {c}{a x}\right )^{3/2}}{a}\right )}{c}\)

\(\Big \downarrow \) 171

\(\displaystyle -\frac {a \left (-\frac {c^2 \left (2 \int \frac {c \left (7 a-\frac {9}{x}\right ) x}{2 \left (a+\frac {1}{x}\right ) \sqrt {c-\frac {c}{a x}}}d\frac {1}{x}-2 \sqrt {c-\frac {c}{a x}}\right )}{2 a^2}-\frac {c x \left (c-\frac {c}{a x}\right )^{3/2}}{a}\right )}{c}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a \left (-\frac {c^2 \left (c \int \frac {\left (7 a-\frac {9}{x}\right ) x}{\left (a+\frac {1}{x}\right ) \sqrt {c-\frac {c}{a x}}}d\frac {1}{x}-2 \sqrt {c-\frac {c}{a x}}\right )}{2 a^2}-\frac {c x \left (c-\frac {c}{a x}\right )^{3/2}}{a}\right )}{c}\)

\(\Big \downarrow \) 174

\(\displaystyle -\frac {a \left (-\frac {c^2 \left (c \left (7 \int \frac {x}{\sqrt {c-\frac {c}{a x}}}d\frac {1}{x}-16 \int \frac {1}{\left (a+\frac {1}{x}\right ) \sqrt {c-\frac {c}{a x}}}d\frac {1}{x}\right )-2 \sqrt {c-\frac {c}{a x}}\right )}{2 a^2}-\frac {c x \left (c-\frac {c}{a x}\right )^{3/2}}{a}\right )}{c}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {a \left (-\frac {c^2 \left (c \left (\frac {32 a \int \frac {1}{2 a-\frac {a}{c x^2}}d\sqrt {c-\frac {c}{a x}}}{c}-\frac {14 a \int \frac {1}{a-\frac {a}{c x^2}}d\sqrt {c-\frac {c}{a x}}}{c}\right )-2 \sqrt {c-\frac {c}{a x}}\right )}{2 a^2}-\frac {c x \left (c-\frac {c}{a x}\right )^{3/2}}{a}\right )}{c}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {a \left (-\frac {c^2 \left (c \left (\frac {16 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {2} \sqrt {c}}\right )}{\sqrt {c}}-\frac {14 \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {c}}\right )}{\sqrt {c}}\right )-2 \sqrt {c-\frac {c}{a x}}\right )}{2 a^2}-\frac {c x \left (c-\frac {c}{a x}\right )^{3/2}}{a}\right )}{c}\)

input
Int[(c - c/(a*x))^(3/2)/E^(2*ArcCoth[a*x]),x]
 
output
-((a*(-((c*(c - c/(a*x))^(3/2)*x)/a) - (c^2*(-2*Sqrt[c - c/(a*x)] + c*((-1 
4*ArcTanh[Sqrt[c - c/(a*x)]/Sqrt[c]])/Sqrt[c] + (16*Sqrt[2]*ArcTanh[Sqrt[c 
 - c/(a*x)]/(Sqrt[2]*Sqrt[c])])/Sqrt[c])))/(2*a^2)))/c)
 

3.5.73.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 171
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*(( 
e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Simp[1/(d*f*(m + n + p + 2)) 
  Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2 
) - h*(b*c*e*m + a*(d*e*(n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) 
+ h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] 
 && IntegersQ[2*m, 2*n, 2*p]
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 281
Int[(u_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_ 
Symbol] :> Simp[(b/d)^p   Int[u*(c + d*x^n)^(p + q), x], x] /; FreeQ[{a, b, 
 c, d, n, p, q}, x] && EqQ[b*c - a*d, 0] && IntegerQ[p] &&  !(IntegerQ[q] & 
& SimplerQ[a + b*x^n, c + d*x^n])
 

rule 899
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol 
] :> -Subst[Int[(a + b/x^n)^p*((c + d/x^n)^q/x^2), x], x, 1/x] /; FreeQ[{a, 
 b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && ILtQ[n, 0]
 

rule 1035
Int[((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_.) + (b_.)*(x_)^(n_.))^(p_.)*((e_) 
 + (f_.)*(x_)^(n_.))^(r_.), x_Symbol] :> Int[x^(n*(p + r))*(b + a/x^n)^p*(c 
 + d/x^n)^q*(f + e/x^n)^r, x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && EqQ[ 
mn, -n] && IntegerQ[p] && IntegerQ[r]
 

rule 6683
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] 
:> Int[u*(c + d/x)^p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x] /; FreeQ[{a, c, 
d, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &&  !G 
tQ[c, 0]
 

rule 6717
Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Simp[(-1)^(n/2)   Int[ 
u*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[a, x] && IntegerQ[n/2]
 
3.5.73.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(192\) vs. \(2(94)=188\).

Time = 0.50 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.71

method result size
risch \(\frac {\left (a^{2} x^{2}-3 a x +2\right ) c \sqrt {\frac {c \left (a x -1\right )}{a x}}}{a \left (a x -1\right )}+\frac {\left (-\frac {7 a \ln \left (\frac {-\frac {1}{2} a c +a^{2} c x}{\sqrt {a^{2} c}}+\sqrt {a^{2} c \,x^{2}-a c x}\right )}{2 \sqrt {a^{2} c}}-\frac {4 \sqrt {2}\, \ln \left (\frac {4 c -3 \left (x +\frac {1}{a}\right ) a c +2 \sqrt {2}\, \sqrt {c}\, \sqrt {a^{2} c \left (x +\frac {1}{a}\right )^{2}-3 \left (x +\frac {1}{a}\right ) a c +2 c}}{x +\frac {1}{a}}\right )}{\sqrt {c}}\right ) c \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \sqrt {c \left (a x -1\right ) a x}}{a \left (a x -1\right )}\) \(193\)
default \(\frac {\sqrt {\frac {c \left (a x -1\right )}{a x}}\, c \left (8 \sqrt {\left (a x -1\right ) x}\, \sqrt {\frac {1}{a}}\, a^{\frac {3}{2}} x^{2}-10 \sqrt {\frac {1}{a}}\, \sqrt {a \,x^{2}-x}\, a^{\frac {3}{2}} x^{2}+4 \left (a \,x^{2}-x \right )^{\frac {3}{2}} \sqrt {a}\, \sqrt {\frac {1}{a}}+5 \sqrt {\frac {1}{a}}\, \ln \left (\frac {2 \sqrt {a \,x^{2}-x}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) a \,x^{2}-8 \ln \left (\frac {2 \sqrt {2}\, \sqrt {\frac {1}{a}}\, \sqrt {\left (a x -1\right ) x}\, a -3 a x +1}{a x +1}\right ) \sqrt {a}\, \sqrt {2}\, x^{2}-12 \sqrt {\frac {1}{a}}\, \ln \left (\frac {2 \sqrt {\left (a x -1\right ) x}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) a \,x^{2}\right )}{2 x \,a^{\frac {3}{2}} \sqrt {\left (a x -1\right ) x}\, \sqrt {\frac {1}{a}}}\) \(229\)

input
int((c-c/a/x)^(3/2)*(a*x-1)/(a*x+1),x,method=_RETURNVERBOSE)
 
output
(a^2*x^2-3*a*x+2)*c/a*(c*(a*x-1)/a/x)^(1/2)/(a*x-1)+(-7/2*a*ln((-1/2*a*c+a 
^2*c*x)/(a^2*c)^(1/2)+(a^2*c*x^2-a*c*x)^(1/2))/(a^2*c)^(1/2)-4*2^(1/2)/c^( 
1/2)*ln((4*c-3*(x+1/a)*a*c+2*2^(1/2)*c^(1/2)*(a^2*c*(x+1/a)^2-3*(x+1/a)*a* 
c+2*c)^(1/2))/(x+1/a)))*c/a*(c*(a*x-1)/a/x)^(1/2)*(c*(a*x-1)*a*x)^(1/2)/(a 
*x-1)
 
3.5.73.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 235, normalized size of antiderivative = 2.08 \[ \int e^{-2 \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^{3/2} \, dx=\left [\frac {8 \, \sqrt {2} c^{\frac {3}{2}} \log \left (-\frac {2 \, \sqrt {2} a \sqrt {c} x \sqrt {\frac {a c x - c}{a x}} + 3 \, a c x - c}{a x + 1}\right ) + 7 \, c^{\frac {3}{2}} \log \left (-2 \, a c x + 2 \, a \sqrt {c} x \sqrt {\frac {a c x - c}{a x}} + c\right ) + 2 \, {\left (a c x - 2 \, c\right )} \sqrt {\frac {a c x - c}{a x}}}{2 \, a}, -\frac {8 \, \sqrt {2} \sqrt {-c} c \arctan \left (\frac {\sqrt {2} \sqrt {-c} \sqrt {\frac {a c x - c}{a x}}}{2 \, c}\right ) - 7 \, \sqrt {-c} c \arctan \left (\frac {\sqrt {-c} \sqrt {\frac {a c x - c}{a x}}}{c}\right ) - {\left (a c x - 2 \, c\right )} \sqrt {\frac {a c x - c}{a x}}}{a}\right ] \]

input
integrate((c-c/a/x)^(3/2)*(a*x-1)/(a*x+1),x, algorithm="fricas")
 
output
[1/2*(8*sqrt(2)*c^(3/2)*log(-(2*sqrt(2)*a*sqrt(c)*x*sqrt((a*c*x - c)/(a*x) 
) + 3*a*c*x - c)/(a*x + 1)) + 7*c^(3/2)*log(-2*a*c*x + 2*a*sqrt(c)*x*sqrt( 
(a*c*x - c)/(a*x)) + c) + 2*(a*c*x - 2*c)*sqrt((a*c*x - c)/(a*x)))/a, -(8* 
sqrt(2)*sqrt(-c)*c*arctan(1/2*sqrt(2)*sqrt(-c)*sqrt((a*c*x - c)/(a*x))/c) 
- 7*sqrt(-c)*c*arctan(sqrt(-c)*sqrt((a*c*x - c)/(a*x))/c) - (a*c*x - 2*c)* 
sqrt((a*c*x - c)/(a*x)))/a]
 
3.5.73.6 Sympy [F]

\[ \int e^{-2 \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^{3/2} \, dx=\int \frac {\left (- c \left (-1 + \frac {1}{a x}\right )\right )^{\frac {3}{2}} \left (a x - 1\right )}{a x + 1}\, dx \]

input
integrate((c-c/a/x)**(3/2)*(a*x-1)/(a*x+1),x)
 
output
Integral((-c*(-1 + 1/(a*x)))**(3/2)*(a*x - 1)/(a*x + 1), x)
 
3.5.73.7 Maxima [F]

\[ \int e^{-2 \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^{3/2} \, dx=\int { \frac {{\left (a x - 1\right )} {\left (c - \frac {c}{a x}\right )}^{\frac {3}{2}}}{a x + 1} \,d x } \]

input
integrate((c-c/a/x)^(3/2)*(a*x-1)/(a*x+1),x, algorithm="maxima")
 
output
integrate((a*x - 1)*(c - c/(a*x))^(3/2)/(a*x + 1), x)
 
3.5.73.8 Giac [F(-2)]

Exception generated. \[ \int e^{-2 \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^{3/2} \, dx=\text {Exception raised: TypeError} \]

input
integrate((c-c/a/x)^(3/2)*(a*x-1)/(a*x+1),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.5.73.9 Mupad [F(-1)]

Timed out. \[ \int e^{-2 \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^{3/2} \, dx=\int \frac {{\left (c-\frac {c}{a\,x}\right )}^{3/2}\,\left (a\,x-1\right )}{a\,x+1} \,d x \]

input
int(((c - c/(a*x))^(3/2)*(a*x - 1))/(a*x + 1),x)
 
output
int(((c - c/(a*x))^(3/2)*(a*x - 1))/(a*x + 1), x)