3.5.98 \(\int e^{2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} x^3 \, dx\) [498]

3.5.98.1 Optimal result
3.5.98.2 Mathematica [C] (verified)
3.5.98.3 Rubi [A] (verified)
3.5.98.4 Maple [A] (verified)
3.5.98.5 Fricas [A] (verification not implemented)
3.5.98.6 Sympy [F]
3.5.98.7 Maxima [F]
3.5.98.8 Giac [A] (verification not implemented)
3.5.98.9 Mupad [F(-1)]

3.5.98.1 Optimal result

Integrand size = 27, antiderivative size = 130 \[ \int e^{2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} x^3 \, dx=\frac {75 \sqrt {c-\frac {c}{a x}} x}{64 a^3}+\frac {25 \sqrt {c-\frac {c}{a x}} x^2}{32 a^2}+\frac {5 \sqrt {c-\frac {c}{a x}} x^3}{8 a}+\frac {1}{4} \sqrt {c-\frac {c}{a x}} x^4+\frac {75 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {c}}\right )}{64 a^4} \]

output
75/64*arctanh((c-c/a/x)^(1/2)/c^(1/2))*c^(1/2)/a^4+75/64*x*(c-c/a/x)^(1/2) 
/a^3+25/32*x^2*(c-c/a/x)^(1/2)/a^2+5/8*x^3*(c-c/a/x)^(1/2)/a+1/4*x^4*(c-c/ 
a/x)^(1/2)
 
3.5.98.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.05 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.38 \[ \int e^{2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} x^3 \, dx=\frac {\sqrt {c-\frac {c}{a x}} \left (a^4 x^4+15 \operatorname {Hypergeometric2F1}\left (\frac {1}{2},4,\frac {3}{2},1-\frac {1}{a x}\right )\right )}{4 a^4} \]

input
Integrate[E^(2*ArcCoth[a*x])*Sqrt[c - c/(a*x)]*x^3,x]
 
output
(Sqrt[c - c/(a*x)]*(a^4*x^4 + 15*Hypergeometric2F1[1/2, 4, 3/2, 1 - 1/(a*x 
)]))/(4*a^4)
 
3.5.98.3 Rubi [A] (verified)

Time = 0.72 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.21, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.407, Rules used = {6717, 6683, 1070, 281, 948, 87, 52, 52, 52, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^3 \sqrt {c-\frac {c}{a x}} e^{2 \coth ^{-1}(a x)} \, dx\)

\(\Big \downarrow \) 6717

\(\displaystyle -\int e^{2 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} x^3dx\)

\(\Big \downarrow \) 6683

\(\displaystyle -\int \frac {\sqrt {c-\frac {c}{a x}} x^3 (a x+1)}{1-a x}dx\)

\(\Big \downarrow \) 1070

\(\displaystyle -\int \frac {\left (a+\frac {1}{x}\right ) \sqrt {c-\frac {c}{a x}} x^3}{\frac {1}{x}-a}dx\)

\(\Big \downarrow \) 281

\(\displaystyle \frac {c \int \frac {\left (a+\frac {1}{x}\right ) x^3}{\sqrt {c-\frac {c}{a x}}}dx}{a}\)

\(\Big \downarrow \) 948

\(\displaystyle -\frac {c \int \frac {\left (a+\frac {1}{x}\right ) x^5}{\sqrt {c-\frac {c}{a x}}}d\frac {1}{x}}{a}\)

\(\Big \downarrow \) 87

\(\displaystyle -\frac {c \left (\frac {15}{8} \int \frac {x^4}{\sqrt {c-\frac {c}{a x}}}d\frac {1}{x}-\frac {a x^4 \sqrt {c-\frac {c}{a x}}}{4 c}\right )}{a}\)

\(\Big \downarrow \) 52

\(\displaystyle -\frac {c \left (\frac {15}{8} \left (\frac {5 \int \frac {x^3}{\sqrt {c-\frac {c}{a x}}}d\frac {1}{x}}{6 a}-\frac {x^3 \sqrt {c-\frac {c}{a x}}}{3 c}\right )-\frac {a x^4 \sqrt {c-\frac {c}{a x}}}{4 c}\right )}{a}\)

\(\Big \downarrow \) 52

\(\displaystyle -\frac {c \left (\frac {15}{8} \left (\frac {5 \left (\frac {3 \int \frac {x^2}{\sqrt {c-\frac {c}{a x}}}d\frac {1}{x}}{4 a}-\frac {x^2 \sqrt {c-\frac {c}{a x}}}{2 c}\right )}{6 a}-\frac {x^3 \sqrt {c-\frac {c}{a x}}}{3 c}\right )-\frac {a x^4 \sqrt {c-\frac {c}{a x}}}{4 c}\right )}{a}\)

\(\Big \downarrow \) 52

\(\displaystyle -\frac {c \left (\frac {15}{8} \left (\frac {5 \left (\frac {3 \left (\frac {\int \frac {x}{\sqrt {c-\frac {c}{a x}}}d\frac {1}{x}}{2 a}-\frac {x \sqrt {c-\frac {c}{a x}}}{c}\right )}{4 a}-\frac {x^2 \sqrt {c-\frac {c}{a x}}}{2 c}\right )}{6 a}-\frac {x^3 \sqrt {c-\frac {c}{a x}}}{3 c}\right )-\frac {a x^4 \sqrt {c-\frac {c}{a x}}}{4 c}\right )}{a}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {c \left (\frac {15}{8} \left (\frac {5 \left (\frac {3 \left (-\frac {\int \frac {1}{a-\frac {a}{c x^2}}d\sqrt {c-\frac {c}{a x}}}{c}-\frac {x \sqrt {c-\frac {c}{a x}}}{c}\right )}{4 a}-\frac {x^2 \sqrt {c-\frac {c}{a x}}}{2 c}\right )}{6 a}-\frac {x^3 \sqrt {c-\frac {c}{a x}}}{3 c}\right )-\frac {a x^4 \sqrt {c-\frac {c}{a x}}}{4 c}\right )}{a}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {c \left (\frac {15}{8} \left (\frac {5 \left (\frac {3 \left (-\frac {\text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {c}}\right )}{a \sqrt {c}}-\frac {x \sqrt {c-\frac {c}{a x}}}{c}\right )}{4 a}-\frac {x^2 \sqrt {c-\frac {c}{a x}}}{2 c}\right )}{6 a}-\frac {x^3 \sqrt {c-\frac {c}{a x}}}{3 c}\right )-\frac {a x^4 \sqrt {c-\frac {c}{a x}}}{4 c}\right )}{a}\)

input
Int[E^(2*ArcCoth[a*x])*Sqrt[c - c/(a*x)]*x^3,x]
 
output
-((c*(-1/4*(a*Sqrt[c - c/(a*x)]*x^4)/c + (15*(-1/3*(Sqrt[c - c/(a*x)]*x^3) 
/c + (5*(-1/2*(Sqrt[c - c/(a*x)]*x^2)/c + (3*(-((Sqrt[c - c/(a*x)]*x)/c) - 
 ArcTanh[Sqrt[c - c/(a*x)]/Sqrt[c]]/(a*Sqrt[c])))/(4*a)))/(6*a)))/8))/a)
 

3.5.98.3.1 Defintions of rubi rules used

rule 52
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && ILtQ[m, -1] && FractionQ[n] && LtQ[n, 0]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 281
Int[(u_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_ 
Symbol] :> Simp[(b/d)^p   Int[u*(c + d*x^n)^(p + q), x], x] /; FreeQ[{a, b, 
 c, d, n, p, q}, x] && EqQ[b*c - a*d, 0] && IntegerQ[p] &&  !(IntegerQ[q] & 
& SimplerQ[a + b*x^n, c + d*x^n])
 

rule 948
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_. 
), x_Symbol] :> Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^ 
p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ 
[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]
 

rule 1070
Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_.) + (b_.)*(x_)^(n_.))^ 
(p_.)*((e_) + (f_.)*(x_)^(n_.))^(r_.), x_Symbol] :> Int[x^(m + n*(p + r))*( 
b + a/x^n)^p*(c + d/x^n)^q*(f + e/x^n)^r, x] /; FreeQ[{a, b, c, d, e, f, m, 
 n, q}, x] && EqQ[mn, -n] && IntegerQ[p] && IntegerQ[r]
 

rule 6683
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] 
:> Int[u*(c + d/x)^p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x] /; FreeQ[{a, c, 
d, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &&  !G 
tQ[c, 0]
 

rule 6717
Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Simp[(-1)^(n/2)   Int[ 
u*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[a, x] && IntegerQ[n/2]
 
3.5.98.4 Maple [A] (verified)

Time = 0.50 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.98

method result size
risch \(\frac {\left (16 a^{3} x^{3}+40 a^{2} x^{2}+50 a x +75\right ) x \sqrt {\frac {c \left (a x -1\right )}{a x}}}{64 a^{3}}+\frac {75 \ln \left (\frac {-\frac {1}{2} a c +a^{2} c x}{\sqrt {a^{2} c}}+\sqrt {a^{2} c \,x^{2}-a c x}\right ) \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \sqrt {c \left (a x -1\right ) a x}}{128 a^{3} \sqrt {a^{2} c}\, \left (a x -1\right )}\) \(127\)
default \(\frac {\sqrt {\frac {c \left (a x -1\right )}{a x}}\, x \left (32 x \left (a \,x^{2}-x \right )^{\frac {3}{2}} a^{\frac {7}{2}}+112 \left (a \,x^{2}-x \right )^{\frac {3}{2}} a^{\frac {5}{2}}+212 \sqrt {a \,x^{2}-x}\, a^{\frac {5}{2}} x -106 \sqrt {a \,x^{2}-x}\, a^{\frac {3}{2}}+256 a^{\frac {3}{2}} \sqrt {\left (a x -1\right ) x}+128 a \ln \left (\frac {2 \sqrt {\left (a x -1\right ) x}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right )-53 \ln \left (\frac {2 \sqrt {a \,x^{2}-x}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) a \right )}{128 \sqrt {\left (a x -1\right ) x}\, a^{\frac {9}{2}}}\) \(172\)

input
int(1/(a*x-1)*(a*x+1)*x^3*(c-c/a/x)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/64*(16*a^3*x^3+40*a^2*x^2+50*a*x+75)/a^3*x*(c*(a*x-1)/a/x)^(1/2)+75/128/ 
a^3*ln((-1/2*a*c+a^2*c*x)/(a^2*c)^(1/2)+(a^2*c*x^2-a*c*x)^(1/2))/(a^2*c)^( 
1/2)/(a*x-1)*(c*(a*x-1)/a/x)^(1/2)*(c*(a*x-1)*a*x)^(1/2)
 
3.5.98.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.38 \[ \int e^{2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} x^3 \, dx=\left [\frac {2 \, {\left (16 \, a^{4} x^{4} + 40 \, a^{3} x^{3} + 50 \, a^{2} x^{2} + 75 \, a x\right )} \sqrt {\frac {a c x - c}{a x}} + 75 \, \sqrt {c} \log \left (-2 \, a c x - 2 \, a \sqrt {c} x \sqrt {\frac {a c x - c}{a x}} + c\right )}{128 \, a^{4}}, \frac {{\left (16 \, a^{4} x^{4} + 40 \, a^{3} x^{3} + 50 \, a^{2} x^{2} + 75 \, a x\right )} \sqrt {\frac {a c x - c}{a x}} - 75 \, \sqrt {-c} \arctan \left (\frac {\sqrt {-c} \sqrt {\frac {a c x - c}{a x}}}{c}\right )}{64 \, a^{4}}\right ] \]

input
integrate(1/(a*x-1)*(a*x+1)*x^3*(c-c/a/x)^(1/2),x, algorithm="fricas")
 
output
[1/128*(2*(16*a^4*x^4 + 40*a^3*x^3 + 50*a^2*x^2 + 75*a*x)*sqrt((a*c*x - c) 
/(a*x)) + 75*sqrt(c)*log(-2*a*c*x - 2*a*sqrt(c)*x*sqrt((a*c*x - c)/(a*x)) 
+ c))/a^4, 1/64*((16*a^4*x^4 + 40*a^3*x^3 + 50*a^2*x^2 + 75*a*x)*sqrt((a*c 
*x - c)/(a*x)) - 75*sqrt(-c)*arctan(sqrt(-c)*sqrt((a*c*x - c)/(a*x))/c))/a 
^4]
 
3.5.98.6 Sympy [F]

\[ \int e^{2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} x^3 \, dx=\int \frac {x^{3} \sqrt {- c \left (-1 + \frac {1}{a x}\right )} \left (a x + 1\right )}{a x - 1}\, dx \]

input
integrate(1/(a*x-1)*(a*x+1)*x**3*(c-c/a/x)**(1/2),x)
 
output
Integral(x**3*sqrt(-c*(-1 + 1/(a*x)))*(a*x + 1)/(a*x - 1), x)
 
3.5.98.7 Maxima [F]

\[ \int e^{2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} x^3 \, dx=\int { \frac {{\left (a x + 1\right )} \sqrt {c - \frac {c}{a x}} x^{3}}{a x - 1} \,d x } \]

input
integrate(1/(a*x-1)*(a*x+1)*x^3*(c-c/a/x)^(1/2),x, algorithm="maxima")
 
output
integrate((a*x + 1)*sqrt(c - c/(a*x))*x^3/(a*x - 1), x)
 
3.5.98.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.09 \[ \int e^{2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} x^3 \, dx=\frac {1}{64} \, \sqrt {a^{2} c x^{2} - a c x} {\left (2 \, {\left (4 \, x {\left (\frac {2 \, x {\left | a \right |}}{a^{2} \mathrm {sgn}\left (x\right )} + \frac {5 \, {\left | a \right |}}{a^{3} \mathrm {sgn}\left (x\right )}\right )} + \frac {25 \, {\left | a \right |}}{a^{4} \mathrm {sgn}\left (x\right )}\right )} x + \frac {75 \, {\left | a \right |}}{a^{5} \mathrm {sgn}\left (x\right )}\right )} + \frac {75 \, \sqrt {c} \log \left ({\left | a \right |} {\left | c \right |}\right ) \mathrm {sgn}\left (x\right )}{128 \, a^{4}} - \frac {75 \, \sqrt {c} \log \left ({\left | -2 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )} \sqrt {c} {\left | a \right |} + a c \right |}\right )}{128 \, a^{4} \mathrm {sgn}\left (x\right )} \]

input
integrate(1/(a*x-1)*(a*x+1)*x^3*(c-c/a/x)^(1/2),x, algorithm="giac")
 
output
1/64*sqrt(a^2*c*x^2 - a*c*x)*(2*(4*x*(2*x*abs(a)/(a^2*sgn(x)) + 5*abs(a)/( 
a^3*sgn(x))) + 25*abs(a)/(a^4*sgn(x)))*x + 75*abs(a)/(a^5*sgn(x))) + 75/12 
8*sqrt(c)*log(abs(a)*abs(c))*sgn(x)/a^4 - 75/128*sqrt(c)*log(abs(-2*(sqrt( 
a^2*c)*x - sqrt(a^2*c*x^2 - a*c*x))*sqrt(c)*abs(a) + a*c))/(a^4*sgn(x))
 
3.5.98.9 Mupad [F(-1)]

Timed out. \[ \int e^{2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} x^3 \, dx=\int \frac {x^3\,\sqrt {c-\frac {c}{a\,x}}\,\left (a\,x+1\right )}{a\,x-1} \,d x \]

input
int((x^3*(c - c/(a*x))^(1/2)*(a*x + 1))/(a*x - 1),x)
 
output
int((x^3*(c - c/(a*x))^(1/2)*(a*x + 1))/(a*x - 1), x)