3.6.30 \(\int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3} \, dx\) [530]

3.6.30.1 Optimal result
3.6.30.2 Mathematica [A] (verified)
3.6.30.3 Rubi [A] (verified)
3.6.30.4 Maple [A] (verified)
3.6.30.5 Fricas [A] (verification not implemented)
3.6.30.6 Sympy [F]
3.6.30.7 Maxima [F]
3.6.30.8 Giac [B] (verification not implemented)
3.6.30.9 Mupad [F(-1)]

3.6.30.1 Optimal result

Integrand size = 27, antiderivative size = 113 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3} \, dx=4 a^2 \sqrt {c-\frac {c}{a x}}+\frac {2 a^2 \left (c-\frac {c}{a x}\right )^{3/2}}{3 c}+\frac {2 a^2 \left (c-\frac {c}{a x}\right )^{5/2}}{5 c^2}-4 \sqrt {2} a^2 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {2} \sqrt {c}}\right ) \]

output
2/3*a^2*(c-c/a/x)^(3/2)/c+2/5*a^2*(c-c/a/x)^(5/2)/c^2-4*a^2*arctanh(1/2*(c 
-c/a/x)^(1/2)*2^(1/2)/c^(1/2))*2^(1/2)*c^(1/2)+4*a^2*(c-c/a/x)^(1/2)
 
3.6.30.2 Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.70 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3} \, dx=\frac {2 \sqrt {c-\frac {c}{a x}} \left (3-11 a x+38 a^2 x^2\right )}{15 x^2}-4 \sqrt {2} a^2 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {2} \sqrt {c}}\right ) \]

input
Integrate[Sqrt[c - c/(a*x)]/(E^(2*ArcCoth[a*x])*x^3),x]
 
output
(2*Sqrt[c - c/(a*x)]*(3 - 11*a*x + 38*a^2*x^2))/(15*x^2) - 4*Sqrt[2]*a^2*S 
qrt[c]*ArcTanh[Sqrt[c - c/(a*x)]/(Sqrt[2]*Sqrt[c])]
 
3.6.30.3 Rubi [A] (verified)

Time = 0.70 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.370, Rules used = {6717, 6683, 1070, 281, 948, 90, 60, 60, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {c-\frac {c}{a x}} e^{-2 \coth ^{-1}(a x)}}{x^3} \, dx\)

\(\Big \downarrow \) 6717

\(\displaystyle -\int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3}dx\)

\(\Big \downarrow \) 6683

\(\displaystyle -\int \frac {\sqrt {c-\frac {c}{a x}} (1-a x)}{x^3 (a x+1)}dx\)

\(\Big \downarrow \) 1070

\(\displaystyle -\int \frac {\left (\frac {1}{x}-a\right ) \sqrt {c-\frac {c}{a x}}}{\left (a+\frac {1}{x}\right ) x^3}dx\)

\(\Big \downarrow \) 281

\(\displaystyle \frac {a \int \frac {\left (c-\frac {c}{a x}\right )^{3/2}}{\left (a+\frac {1}{x}\right ) x^3}dx}{c}\)

\(\Big \downarrow \) 948

\(\displaystyle -\frac {a \int \frac {\left (c-\frac {c}{a x}\right )^{3/2}}{\left (a+\frac {1}{x}\right ) x}d\frac {1}{x}}{c}\)

\(\Big \downarrow \) 90

\(\displaystyle -\frac {a \left (-a \int \frac {\left (c-\frac {c}{a x}\right )^{3/2}}{a+\frac {1}{x}}d\frac {1}{x}-\frac {2 a \left (c-\frac {c}{a x}\right )^{5/2}}{5 c}\right )}{c}\)

\(\Big \downarrow \) 60

\(\displaystyle -\frac {a \left (-a \left (2 c \int \frac {\sqrt {c-\frac {c}{a x}}}{a+\frac {1}{x}}d\frac {1}{x}+\frac {2}{3} \left (c-\frac {c}{a x}\right )^{3/2}\right )-\frac {2 a \left (c-\frac {c}{a x}\right )^{5/2}}{5 c}\right )}{c}\)

\(\Big \downarrow \) 60

\(\displaystyle -\frac {a \left (-a \left (2 c \left (2 c \int \frac {1}{\left (a+\frac {1}{x}\right ) \sqrt {c-\frac {c}{a x}}}d\frac {1}{x}+2 \sqrt {c-\frac {c}{a x}}\right )+\frac {2}{3} \left (c-\frac {c}{a x}\right )^{3/2}\right )-\frac {2 a \left (c-\frac {c}{a x}\right )^{5/2}}{5 c}\right )}{c}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {a \left (-a \left (2 c \left (2 \sqrt {c-\frac {c}{a x}}-4 a \int \frac {1}{2 a-\frac {a}{c x^2}}d\sqrt {c-\frac {c}{a x}}\right )+\frac {2}{3} \left (c-\frac {c}{a x}\right )^{3/2}\right )-\frac {2 a \left (c-\frac {c}{a x}\right )^{5/2}}{5 c}\right )}{c}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {a \left (-a \left (2 c \left (2 \sqrt {c-\frac {c}{a x}}-2 \sqrt {2} \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {2} \sqrt {c}}\right )\right )+\frac {2}{3} \left (c-\frac {c}{a x}\right )^{3/2}\right )-\frac {2 a \left (c-\frac {c}{a x}\right )^{5/2}}{5 c}\right )}{c}\)

input
Int[Sqrt[c - c/(a*x)]/(E^(2*ArcCoth[a*x])*x^3),x]
 
output
-((a*((-2*a*(c - c/(a*x))^(5/2))/(5*c) - a*((2*(c - c/(a*x))^(3/2))/3 + 2* 
c*(2*Sqrt[c - c/(a*x)] - 2*Sqrt[2]*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x)]/(Sqrt 
[2]*Sqrt[c])]))))/c)
 

3.6.30.3.1 Defintions of rubi rules used

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 90
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] + Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(d*f*(n + p 
+ 2))   Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, 
p}, x] && NeQ[n + p + 2, 0]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 281
Int[(u_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_ 
Symbol] :> Simp[(b/d)^p   Int[u*(c + d*x^n)^(p + q), x], x] /; FreeQ[{a, b, 
 c, d, n, p, q}, x] && EqQ[b*c - a*d, 0] && IntegerQ[p] &&  !(IntegerQ[q] & 
& SimplerQ[a + b*x^n, c + d*x^n])
 

rule 948
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_. 
), x_Symbol] :> Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^ 
p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ 
[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]
 

rule 1070
Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_.) + (b_.)*(x_)^(n_.))^ 
(p_.)*((e_) + (f_.)*(x_)^(n_.))^(r_.), x_Symbol] :> Int[x^(m + n*(p + r))*( 
b + a/x^n)^p*(c + d/x^n)^q*(f + e/x^n)^r, x] /; FreeQ[{a, b, c, d, e, f, m, 
 n, q}, x] && EqQ[mn, -n] && IntegerQ[p] && IntegerQ[r]
 

rule 6683
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] 
:> Int[u*(c + d/x)^p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x] /; FreeQ[{a, c, 
d, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &&  !G 
tQ[c, 0]
 

rule 6717
Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Simp[(-1)^(n/2)   Int[ 
u*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[a, x] && IntegerQ[n/2]
 
3.6.30.4 Maple [A] (verified)

Time = 0.52 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.35

method result size
risch \(\frac {2 \left (38 a^{3} x^{3}-49 a^{2} x^{2}+14 a x -3\right ) \sqrt {\frac {c \left (a x -1\right )}{a x}}}{15 x^{2} \left (a x -1\right )}+\frac {2 a^{2} \sqrt {2}\, \ln \left (\frac {4 c -3 \left (x +\frac {1}{a}\right ) a c +2 \sqrt {2}\, \sqrt {c}\, \sqrt {a^{2} c \left (x +\frac {1}{a}\right )^{2}-3 \left (x +\frac {1}{a}\right ) a c +2 c}}{x +\frac {1}{a}}\right ) \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \sqrt {c \left (a x -1\right ) a x}}{\sqrt {c}\, \left (a x -1\right )}\) \(152\)
default \(-\frac {\sqrt {\frac {c \left (a x -1\right )}{a x}}\, \left (30 \sqrt {\left (a x -1\right ) x}\, a^{\frac {7}{2}} \sqrt {\frac {1}{a}}\, x^{4}-90 a^{\frac {7}{2}} \sqrt {\frac {1}{a}}\, \sqrt {a \,x^{2}-x}\, x^{4}+60 a^{\frac {5}{2}} \sqrt {\frac {1}{a}}\, \left (a \,x^{2}-x \right )^{\frac {3}{2}} x^{2}+45 \sqrt {\frac {1}{a}}\, \ln \left (\frac {2 \sqrt {a \,x^{2}-x}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) a^{3} x^{4}-30 a^{\frac {5}{2}} \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {\frac {1}{a}}\, \sqrt {\left (a x -1\right ) x}\, a -3 a x +1}{a x +1}\right ) x^{4}-45 \sqrt {\frac {1}{a}}\, \ln \left (\frac {2 \sqrt {\left (a x -1\right ) x}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) a^{3} x^{4}-16 a^{\frac {3}{2}} \left (a \,x^{2}-x \right )^{\frac {3}{2}} x \sqrt {\frac {1}{a}}+6 \left (a \,x^{2}-x \right )^{\frac {3}{2}} \sqrt {a}\, \sqrt {\frac {1}{a}}\right )}{15 x^{3} \sqrt {\left (a x -1\right ) x}\, \sqrt {a}\, \sqrt {\frac {1}{a}}}\) \(278\)

input
int((c-c/a/x)^(1/2)*(a*x-1)/(a*x+1)/x^3,x,method=_RETURNVERBOSE)
 
output
2/15*(38*a^3*x^3-49*a^2*x^2+14*a*x-3)/x^2/(a*x-1)*(c*(a*x-1)/a/x)^(1/2)+2* 
a^2*2^(1/2)/c^(1/2)*ln((4*c-3*(x+1/a)*a*c+2*2^(1/2)*c^(1/2)*(a^2*c*(x+1/a) 
^2-3*(x+1/a)*a*c+2*c)^(1/2))/(x+1/a))/(a*x-1)*(c*(a*x-1)/a/x)^(1/2)*(c*(a* 
x-1)*a*x)^(1/2)
 
3.6.30.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.60 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3} \, dx=\left [\frac {2 \, {\left (15 \, \sqrt {2} a^{2} \sqrt {c} x^{2} \log \left (\frac {2 \, \sqrt {2} a \sqrt {c} x \sqrt {\frac {a c x - c}{a x}} - 3 \, a c x + c}{a x + 1}\right ) + {\left (38 \, a^{2} x^{2} - 11 \, a x + 3\right )} \sqrt {\frac {a c x - c}{a x}}\right )}}{15 \, x^{2}}, \frac {2 \, {\left (30 \, \sqrt {2} a^{2} \sqrt {-c} x^{2} \arctan \left (\frac {\sqrt {2} \sqrt {-c} \sqrt {\frac {a c x - c}{a x}}}{2 \, c}\right ) + {\left (38 \, a^{2} x^{2} - 11 \, a x + 3\right )} \sqrt {\frac {a c x - c}{a x}}\right )}}{15 \, x^{2}}\right ] \]

input
integrate((c-c/a/x)^(1/2)*(a*x-1)/(a*x+1)/x^3,x, algorithm="fricas")
 
output
[2/15*(15*sqrt(2)*a^2*sqrt(c)*x^2*log((2*sqrt(2)*a*sqrt(c)*x*sqrt((a*c*x - 
 c)/(a*x)) - 3*a*c*x + c)/(a*x + 1)) + (38*a^2*x^2 - 11*a*x + 3)*sqrt((a*c 
*x - c)/(a*x)))/x^2, 2/15*(30*sqrt(2)*a^2*sqrt(-c)*x^2*arctan(1/2*sqrt(2)* 
sqrt(-c)*sqrt((a*c*x - c)/(a*x))/c) + (38*a^2*x^2 - 11*a*x + 3)*sqrt((a*c* 
x - c)/(a*x)))/x^2]
 
3.6.30.6 Sympy [F]

\[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3} \, dx=\int \frac {\sqrt {- c \left (-1 + \frac {1}{a x}\right )} \left (a x - 1\right )}{x^{3} \left (a x + 1\right )}\, dx \]

input
integrate((c-c/a/x)**(1/2)*(a*x-1)/(a*x+1)/x**3,x)
 
output
Integral(sqrt(-c*(-1 + 1/(a*x)))*(a*x - 1)/(x**3*(a*x + 1)), x)
 
3.6.30.7 Maxima [F]

\[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3} \, dx=\int { \frac {{\left (a x - 1\right )} \sqrt {c - \frac {c}{a x}}}{{\left (a x + 1\right )} x^{3}} \,d x } \]

input
integrate((c-c/a/x)^(1/2)*(a*x-1)/(a*x+1)/x^3,x, algorithm="maxima")
 
output
integrate((a*x - 1)*sqrt(c - c/(a*x))/((a*x + 1)*x^3), x)
 
3.6.30.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 278 vs. \(2 (94) = 188\).

Time = 0.64 (sec) , antiderivative size = 278, normalized size of antiderivative = 2.46 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3} \, dx=-\frac {4 \, \sqrt {2} a^{3} c \arctan \left (-\frac {\sqrt {2} {\left ({\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )} a + \sqrt {c} {\left | a \right |}\right )}}{2 \, a \sqrt {-c}}\right )}{\sqrt {-c} {\left | a \right |} \mathrm {sgn}\left (x\right )} + \frac {2 \, {\left (60 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )}^{4} a^{5} c - 45 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )}^{3} a^{4} c^{\frac {3}{2}} {\left | a \right |} + 35 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )}^{2} a^{5} c^{2} - 15 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )} a^{4} c^{\frac {5}{2}} {\left | a \right |} + 3 \, a^{5} c^{3}\right )}}{15 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )}^{5} a^{2} {\left | a \right |} \mathrm {sgn}\left (x\right )} \]

input
integrate((c-c/a/x)^(1/2)*(a*x-1)/(a*x+1)/x^3,x, algorithm="giac")
 
output
-4*sqrt(2)*a^3*c*arctan(-1/2*sqrt(2)*((sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - a* 
c*x))*a + sqrt(c)*abs(a))/(a*sqrt(-c)))/(sqrt(-c)*abs(a)*sgn(x)) + 2/15*(6 
0*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - a*c*x))^4*a^5*c - 45*(sqrt(a^2*c)*x - 
sqrt(a^2*c*x^2 - a*c*x))^3*a^4*c^(3/2)*abs(a) + 35*(sqrt(a^2*c)*x - sqrt(a 
^2*c*x^2 - a*c*x))^2*a^5*c^2 - 15*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - a*c*x) 
)*a^4*c^(5/2)*abs(a) + 3*a^5*c^3)/((sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - a*c*x 
))^5*a^2*abs(a)*sgn(x))
 
3.6.30.9 Mupad [F(-1)]

Timed out. \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3} \, dx=\int \frac {\sqrt {c-\frac {c}{a\,x}}\,\left (a\,x-1\right )}{x^3\,\left (a\,x+1\right )} \,d x \]

input
int(((c - c/(a*x))^(1/2)*(a*x - 1))/(x^3*(a*x + 1)),x)
 
output
int(((c - c/(a*x))^(1/2)*(a*x - 1))/(x^3*(a*x + 1)), x)