3.7.8 \(\int e^{-3 \coth ^{-1}(a x)} (c-a^2 c x^2)^2 \, dx\) [608]

3.7.8.1 Optimal result
3.7.8.2 Mathematica [A] (verified)
3.7.8.3 Rubi [F]
3.7.8.4 Maple [A] (verified)
3.7.8.5 Fricas [A] (verification not implemented)
3.7.8.6 Sympy [F]
3.7.8.7 Maxima [A] (verification not implemented)
3.7.8.8 Giac [A] (verification not implemented)
3.7.8.9 Mupad [B] (verification not implemented)

3.7.8.1 Optimal result

Integrand size = 22, antiderivative size = 233 \[ \int e^{-3 \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^2 \, dx=\frac {7}{8} c^2 \sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}} x-\frac {7}{8} a c^2 \sqrt {1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/2} x^2+\frac {7}{12} a^2 c^2 \left (1-\frac {1}{a x}\right )^{3/2} \left (1+\frac {1}{a x}\right )^{3/2} x^3-\frac {7}{20} a^3 c^2 \left (1-\frac {1}{a x}\right )^{5/2} \left (1+\frac {1}{a x}\right )^{3/2} x^4+\frac {1}{5} a^4 c^2 \left (1-\frac {1}{a x}\right )^{7/2} \left (1+\frac {1}{a x}\right )^{3/2} x^5+\frac {7 c^2 \text {arctanh}\left (\sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}}\right )}{8 a} \]

output
7/12*a^2*c^2*(1-1/a/x)^(3/2)*(1+1/a/x)^(3/2)*x^3-7/20*a^3*c^2*(1-1/a/x)^(5 
/2)*(1+1/a/x)^(3/2)*x^4+1/5*a^4*c^2*(1-1/a/x)^(7/2)*(1+1/a/x)^(3/2)*x^5+7/ 
8*c^2*arctanh((1-1/a/x)^(1/2)*(1+1/a/x)^(1/2))/a-7/8*a*c^2*(1+1/a/x)^(3/2) 
*x^2*(1-1/a/x)^(1/2)+7/8*c^2*x*(1-1/a/x)^(1/2)*(1+1/a/x)^(1/2)
 
3.7.8.2 Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.34 \[ \int e^{-3 \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^2 \, dx=\frac {c^2 \left (a \sqrt {1-\frac {1}{a^2 x^2}} x \left (-136-15 a x+112 a^2 x^2-90 a^3 x^3+24 a^4 x^4\right )+105 \log \left (\left (1+\sqrt {1-\frac {1}{a^2 x^2}}\right ) x\right )\right )}{120 a} \]

input
Integrate[(c - a^2*c*x^2)^2/E^(3*ArcCoth[a*x]),x]
 
output
(c^2*(a*Sqrt[1 - 1/(a^2*x^2)]*x*(-136 - 15*a*x + 112*a^2*x^2 - 90*a^3*x^3 
+ 24*a^4*x^4) + 105*Log[(1 + Sqrt[1 - 1/(a^2*x^2)])*x]))/(120*a)
 
3.7.8.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (c-a^2 c x^2\right )^2 e^{-3 \coth ^{-1}(a x)} \, dx\)

\(\Big \downarrow \) 6745

\(\displaystyle a^4 c^2 \int \frac {e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4}{a^4}dx\)

\(\Big \downarrow \) 27

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4dx\)

\(\Big \downarrow \) 2005

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2 x^2-1\right )^2dx\)

\(\Big \downarrow \) 6745

\(\displaystyle a^4 c^2 \int \frac {e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4}{a^4}dx\)

\(\Big \downarrow \) 27

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4dx\)

\(\Big \downarrow \) 2005

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2 x^2-1\right )^2dx\)

\(\Big \downarrow \) 6745

\(\displaystyle a^4 c^2 \int \frac {e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4}{a^4}dx\)

\(\Big \downarrow \) 27

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4dx\)

\(\Big \downarrow \) 2005

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2 x^2-1\right )^2dx\)

\(\Big \downarrow \) 6745

\(\displaystyle a^4 c^2 \int \frac {e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4}{a^4}dx\)

\(\Big \downarrow \) 27

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4dx\)

\(\Big \downarrow \) 2005

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2 x^2-1\right )^2dx\)

\(\Big \downarrow \) 6745

\(\displaystyle a^4 c^2 \int \frac {e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4}{a^4}dx\)

\(\Big \downarrow \) 27

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4dx\)

\(\Big \downarrow \) 2005

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2 x^2-1\right )^2dx\)

\(\Big \downarrow \) 6745

\(\displaystyle a^4 c^2 \int \frac {e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4}{a^4}dx\)

\(\Big \downarrow \) 27

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4dx\)

\(\Big \downarrow \) 2005

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2 x^2-1\right )^2dx\)

\(\Big \downarrow \) 6745

\(\displaystyle a^4 c^2 \int \frac {e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4}{a^4}dx\)

\(\Big \downarrow \) 27

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4dx\)

\(\Big \downarrow \) 2005

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2 x^2-1\right )^2dx\)

\(\Big \downarrow \) 6745

\(\displaystyle a^4 c^2 \int \frac {e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4}{a^4}dx\)

\(\Big \downarrow \) 27

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4dx\)

\(\Big \downarrow \) 2005

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2 x^2-1\right )^2dx\)

\(\Big \downarrow \) 6745

\(\displaystyle a^4 c^2 \int \frac {e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4}{a^4}dx\)

\(\Big \downarrow \) 27

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4dx\)

\(\Big \downarrow \) 2005

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2 x^2-1\right )^2dx\)

\(\Big \downarrow \) 6745

\(\displaystyle a^4 c^2 \int \frac {e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4}{a^4}dx\)

\(\Big \downarrow \) 27

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2-\frac {1}{x^2}\right )^2 x^4dx\)

\(\Big \downarrow \) 2005

\(\displaystyle c^2 \int e^{-3 \coth ^{-1}(a x)} \left (a^2 x^2-1\right )^2dx\)

input
Int[(c - a^2*c*x^2)^2/E^(3*ArcCoth[a*x]),x]
 
output
$Aborted
 

3.7.8.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2005
Int[(Fx_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[x^(m 
+ n*p)*(b + a/x^n)^p*Fx, x] /; FreeQ[{a, b, m, n}, x] && IntegerQ[p] && Neg 
Q[n]
 

rule 6745
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symb 
ol] :> Simp[d^p   Int[u*x^(2*p)*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], 
 x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] &&  !IntegerQ[n/2] && In 
tegerQ[p]
 
3.7.8.4 Maple [A] (verified)

Time = 0.51 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.55

method result size
risch \(\frac {\left (24 a^{4} x^{4}-90 a^{3} x^{3}+112 a^{2} x^{2}-15 a x -136\right ) \left (a x +1\right ) c^{2} \sqrt {\frac {a x -1}{a x +1}}}{120 a}+\frac {7 \ln \left (\frac {a^{2} x}{\sqrt {a^{2}}}+\sqrt {a^{2} x^{2}-1}\right ) c^{2} \sqrt {\frac {a x -1}{a x +1}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}}{8 \sqrt {a^{2}}\, \left (a x -1\right )}\) \(128\)
default \(\frac {\left (\frac {a x -1}{a x +1}\right )^{\frac {3}{2}} \left (a x +1\right )^{2} c^{2} \left (24 \left (a^{2} x^{2}-1\right )^{\frac {3}{2}} \sqrt {a^{2}}\, a^{2} x^{2}-90 \left (a^{2} x^{2}-1\right )^{\frac {3}{2}} \sqrt {a^{2}}\, a x +16 \left (a^{2} x^{2}-1\right )^{\frac {3}{2}} \sqrt {a^{2}}-105 \sqrt {a^{2} x^{2}-1}\, \sqrt {a^{2}}\, a x +120 \left (\left (a x -1\right ) \left (a x +1\right )\right )^{\frac {3}{2}} \sqrt {a^{2}}+105 \ln \left (\frac {a^{2} x +\sqrt {a^{2} x^{2}-1}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) a \right )}{120 a \left (a x -1\right ) \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}\) \(192\)

input
int((-a^2*c*x^2+c)^2*((a*x-1)/(a*x+1))^(3/2),x,method=_RETURNVERBOSE)
 
output
1/120*(24*a^4*x^4-90*a^3*x^3+112*a^2*x^2-15*a*x-136)*(a*x+1)/a*c^2*((a*x-1 
)/(a*x+1))^(1/2)+7/8*ln(a^2*x/(a^2)^(1/2)+(a^2*x^2-1)^(1/2))/(a^2)^(1/2)*c 
^2*((a*x-1)/(a*x+1))^(1/2)*((a*x-1)*(a*x+1))^(1/2)/(a*x-1)
 
3.7.8.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.54 \[ \int e^{-3 \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^2 \, dx=\frac {105 \, c^{2} \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) - 105 \, c^{2} \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right ) + {\left (24 \, a^{5} c^{2} x^{5} - 66 \, a^{4} c^{2} x^{4} + 22 \, a^{3} c^{2} x^{3} + 97 \, a^{2} c^{2} x^{2} - 151 \, a c^{2} x - 136 \, c^{2}\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{120 \, a} \]

input
integrate((-a^2*c*x^2+c)^2*((a*x-1)/(a*x+1))^(3/2),x, algorithm="fricas")
 
output
1/120*(105*c^2*log(sqrt((a*x - 1)/(a*x + 1)) + 1) - 105*c^2*log(sqrt((a*x 
- 1)/(a*x + 1)) - 1) + (24*a^5*c^2*x^5 - 66*a^4*c^2*x^4 + 22*a^3*c^2*x^3 + 
 97*a^2*c^2*x^2 - 151*a*c^2*x - 136*c^2)*sqrt((a*x - 1)/(a*x + 1)))/a
 
3.7.8.6 Sympy [F]

\[ \int e^{-3 \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^2 \, dx=c^{2} \left (\int \left (- \frac {\sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}{a x + 1}\right )\, dx + \int \frac {a x \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}{a x + 1}\, dx + \int \frac {2 a^{2} x^{2} \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}{a x + 1}\, dx + \int \left (- \frac {2 a^{3} x^{3} \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}{a x + 1}\right )\, dx + \int \left (- \frac {a^{4} x^{4} \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}{a x + 1}\right )\, dx + \int \frac {a^{5} x^{5} \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}{a x + 1}\, dx\right ) \]

input
integrate((-a**2*c*x**2+c)**2*((a*x-1)/(a*x+1))**(3/2),x)
 
output
c**2*(Integral(-sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a*x + 1), x) + Integral 
(a*x*sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a*x + 1), x) + Integral(2*a**2*x** 
2*sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a*x + 1), x) + Integral(-2*a**3*x**3* 
sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a*x + 1), x) + Integral(-a**4*x**4*sqrt 
(a*x/(a*x + 1) - 1/(a*x + 1))/(a*x + 1), x) + Integral(a**5*x**5*sqrt(a*x/ 
(a*x + 1) - 1/(a*x + 1))/(a*x + 1), x))
 
3.7.8.7 Maxima [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 259, normalized size of antiderivative = 1.11 \[ \int e^{-3 \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^2 \, dx=\frac {1}{120} \, a {\left (\frac {105 \, c^{2} \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2}} - \frac {105 \, c^{2} \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right )}{a^{2}} - \frac {2 \, {\left (105 \, c^{2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {9}{2}} + 790 \, c^{2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {7}{2}} - 896 \, c^{2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {5}{2}} + 490 \, c^{2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}} - 105 \, c^{2} \sqrt {\frac {a x - 1}{a x + 1}}\right )}}{\frac {5 \, {\left (a x - 1\right )} a^{2}}{a x + 1} - \frac {10 \, {\left (a x - 1\right )}^{2} a^{2}}{{\left (a x + 1\right )}^{2}} + \frac {10 \, {\left (a x - 1\right )}^{3} a^{2}}{{\left (a x + 1\right )}^{3}} - \frac {5 \, {\left (a x - 1\right )}^{4} a^{2}}{{\left (a x + 1\right )}^{4}} + \frac {{\left (a x - 1\right )}^{5} a^{2}}{{\left (a x + 1\right )}^{5}} - a^{2}}\right )} \]

input
integrate((-a^2*c*x^2+c)^2*((a*x-1)/(a*x+1))^(3/2),x, algorithm="maxima")
 
output
1/120*a*(105*c^2*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^2 - 105*c^2*log(sqrt 
((a*x - 1)/(a*x + 1)) - 1)/a^2 - 2*(105*c^2*((a*x - 1)/(a*x + 1))^(9/2) + 
790*c^2*((a*x - 1)/(a*x + 1))^(7/2) - 896*c^2*((a*x - 1)/(a*x + 1))^(5/2) 
+ 490*c^2*((a*x - 1)/(a*x + 1))^(3/2) - 105*c^2*sqrt((a*x - 1)/(a*x + 1))) 
/(5*(a*x - 1)*a^2/(a*x + 1) - 10*(a*x - 1)^2*a^2/(a*x + 1)^2 + 10*(a*x - 1 
)^3*a^2/(a*x + 1)^3 - 5*(a*x - 1)^4*a^2/(a*x + 1)^4 + (a*x - 1)^5*a^2/(a*x 
 + 1)^5 - a^2))
 
3.7.8.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.54 \[ \int e^{-3 \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^2 \, dx=-\frac {7 \, c^{2} \log \left ({\left | -x {\left | a \right |} + \sqrt {a^{2} x^{2} - 1} \right |}\right ) \mathrm {sgn}\left (a x + 1\right )}{8 \, {\left | a \right |}} - \frac {1}{120} \, \sqrt {a^{2} x^{2} - 1} {\left ({\left (15 \, c^{2} \mathrm {sgn}\left (a x + 1\right ) - 2 \, {\left (56 \, a c^{2} \mathrm {sgn}\left (a x + 1\right ) + 3 \, {\left (4 \, a^{3} c^{2} x \mathrm {sgn}\left (a x + 1\right ) - 15 \, a^{2} c^{2} \mathrm {sgn}\left (a x + 1\right )\right )} x\right )} x\right )} x + \frac {136 \, c^{2} \mathrm {sgn}\left (a x + 1\right )}{a}\right )} \]

input
integrate((-a^2*c*x^2+c)^2*((a*x-1)/(a*x+1))^(3/2),x, algorithm="giac")
 
output
-7/8*c^2*log(abs(-x*abs(a) + sqrt(a^2*x^2 - 1)))*sgn(a*x + 1)/abs(a) - 1/1 
20*sqrt(a^2*x^2 - 1)*((15*c^2*sgn(a*x + 1) - 2*(56*a*c^2*sgn(a*x + 1) + 3* 
(4*a^3*c^2*x*sgn(a*x + 1) - 15*a^2*c^2*sgn(a*x + 1))*x)*x)*x + 136*c^2*sgn 
(a*x + 1)/a)
 
3.7.8.9 Mupad [B] (verification not implemented)

Time = 3.93 (sec) , antiderivative size = 214, normalized size of antiderivative = 0.92 \[ \int e^{-3 \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^2 \, dx=\frac {\frac {49\,c^2\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2}}{6}-\frac {7\,c^2\,\sqrt {\frac {a\,x-1}{a\,x+1}}}{4}-\frac {224\,c^2\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{5/2}}{15}+\frac {79\,c^2\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{7/2}}{6}+\frac {7\,c^2\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{9/2}}{4}}{a-\frac {5\,a\,\left (a\,x-1\right )}{a\,x+1}+\frac {10\,a\,{\left (a\,x-1\right )}^2}{{\left (a\,x+1\right )}^2}-\frac {10\,a\,{\left (a\,x-1\right )}^3}{{\left (a\,x+1\right )}^3}+\frac {5\,a\,{\left (a\,x-1\right )}^4}{{\left (a\,x+1\right )}^4}-\frac {a\,{\left (a\,x-1\right )}^5}{{\left (a\,x+1\right )}^5}}+\frac {7\,c^2\,\mathrm {atanh}\left (\sqrt {\frac {a\,x-1}{a\,x+1}}\right )}{4\,a} \]

input
int((c - a^2*c*x^2)^2*((a*x - 1)/(a*x + 1))^(3/2),x)
 
output
((49*c^2*((a*x - 1)/(a*x + 1))^(3/2))/6 - (7*c^2*((a*x - 1)/(a*x + 1))^(1/ 
2))/4 - (224*c^2*((a*x - 1)/(a*x + 1))^(5/2))/15 + (79*c^2*((a*x - 1)/(a*x 
 + 1))^(7/2))/6 + (7*c^2*((a*x - 1)/(a*x + 1))^(9/2))/4)/(a - (5*a*(a*x - 
1))/(a*x + 1) + (10*a*(a*x - 1)^2)/(a*x + 1)^2 - (10*a*(a*x - 1)^3)/(a*x + 
 1)^3 + (5*a*(a*x - 1)^4)/(a*x + 1)^4 - (a*(a*x - 1)^5)/(a*x + 1)^5) + (7* 
c^2*atanh(((a*x - 1)/(a*x + 1))^(1/2)))/(4*a)