3.1.63 \(\int \frac {e^{\text {sech}^{-1}(a x^p)}}{x} \, dx\) [63]

3.1.63.1 Optimal result
3.1.63.2 Mathematica [C] (verified)
3.1.63.3 Rubi [A] (warning: unable to verify)
3.1.63.4 Maple [C] (verified)
3.1.63.5 Fricas [A] (verification not implemented)
3.1.63.6 Sympy [F]
3.1.63.7 Maxima [F]
3.1.63.8 Giac [F]
3.1.63.9 Mupad [F(-1)]

3.1.63.1 Optimal result

Integrand size = 12, antiderivative size = 87 \[ \int \frac {e^{\text {sech}^{-1}\left (a x^p\right )}}{x} \, dx=-\frac {x^{-p}}{a p}-\frac {x^{-p} \sqrt {1-a x^p}}{a p \sqrt {\frac {1}{1+a x^p}}}-\frac {\sqrt {\frac {1}{1+a x^p}} \sqrt {1+a x^p} \arcsin \left (a x^p\right )}{p} \]

output
-1/a/p/(x^p)-(1-a*x^p)^(1/2)/a/p/(x^p)/(1/(1+a*x^p))^(1/2)-arcsin(a*x^p)*( 
1/(1+a*x^p))^(1/2)*(1+a*x^p)^(1/2)/p
 
3.1.63.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.15 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.10 \[ \int \frac {e^{\text {sech}^{-1}\left (a x^p\right )}}{x} \, dx=-\frac {i \left (-i x^{-p}-i \left (a+x^{-p}\right ) \sqrt {\frac {1-a x^p}{1+a x^p}}+a \log \left (-2 i a x^p+2 \sqrt {\frac {1-a x^p}{1+a x^p}} \left (1+a x^p\right )\right )\right )}{a p} \]

input
Integrate[E^ArcSech[a*x^p]/x,x]
 
output
((-I)*((-I)/x^p - I*(a + x^(-p))*Sqrt[(1 - a*x^p)/(1 + a*x^p)] + a*Log[(-2 
*I)*a*x^p + 2*Sqrt[(1 - a*x^p)/(1 + a*x^p)]*(1 + a*x^p)]))/(a*p)
 
3.1.63.3 Rubi [A] (warning: unable to verify)

Time = 0.29 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.87, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {6888, 791, 868, 773, 247, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{\text {sech}^{-1}\left (a x^p\right )}}{x} \, dx\)

\(\Big \downarrow \) 6888

\(\displaystyle \frac {\sqrt {\frac {1}{a x^p+1}} \sqrt {a x^p+1} \int x^{-p-1} \sqrt {1-a x^p} \sqrt {a x^p+1}dx}{a}-\frac {x^{-p}}{a p}\)

\(\Big \downarrow \) 791

\(\displaystyle \frac {\sqrt {\frac {1}{a x^p+1}} \sqrt {a x^p+1} \int x^{-p-1} \sqrt {1-a^2 x^{2 p}}dx}{a}-\frac {x^{-p}}{a p}\)

\(\Big \downarrow \) 868

\(\displaystyle -\frac {\sqrt {\frac {1}{a x^p+1}} \sqrt {a x^p+1} \int \sqrt {1-a^2 x^{2 p}}dx^{-p}}{a p}-\frac {x^{-p}}{a p}\)

\(\Big \downarrow \) 773

\(\displaystyle \frac {\sqrt {\frac {1}{a x^p+1}} \sqrt {a x^p+1} \int x^{2 p} \sqrt {1-a^2 x^{-2 p}}dx^p}{a p}-\frac {x^{-p}}{a p}\)

\(\Big \downarrow \) 247

\(\displaystyle \frac {\sqrt {\frac {1}{a x^p+1}} \sqrt {a x^p+1} \left (x^p \left (-\sqrt {1-a^2 x^{-2 p}}\right )-a^2 \int \frac {1}{\sqrt {1-a^2 x^{-2 p}}}dx^p\right )}{a p}-\frac {x^{-p}}{a p}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {\sqrt {\frac {1}{a x^p+1}} \sqrt {a x^p+1} \left (x^p \left (-\sqrt {1-a^2 x^{-2 p}}\right )-a \arcsin \left (a x^p\right )\right )}{a p}-\frac {x^{-p}}{a p}\)

input
Int[E^ArcSech[a*x^p]/x,x]
 
output
-(1/(a*p*x^p)) + (Sqrt[(1 + a*x^p)^(-1)]*Sqrt[1 + a*x^p]*(-(x^p*Sqrt[1 - a 
^2/x^(2*p)]) - a*ArcSin[a*x^p]))/(a*p)
 

3.1.63.3.1 Defintions of rubi rules used

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 247
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^ 
(m + 1)*((a + b*x^2)^p/(c*(m + 1))), x] - Simp[2*b*(p/(c^2*(m + 1)))   Int[ 
(c*x)^(m + 2)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && GtQ[p, 
0] && LtQ[m, -1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomialQ[a, b, c, 2, 
m, p, x]
 

rule 773
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^ 
2, x], x, 1/x] /; FreeQ[{a, b, p}, x] && ILtQ[n, 0] &&  !IntegerQ[p]
 

rule 791
Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_) 
^(n_))^(p_), x_Symbol] :> Int[(c*x)^m*(a1*a2 + b1*b2*x^(2*n))^p, x] /; Free 
Q[{a1, b1, a2, b2, c, m, n, p}, x] && EqQ[a2*b1 + a1*b2, 0] && (IntegerQ[p] 
 || (GtQ[a1, 0] && GtQ[a2, 0]))
 

rule 868
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/(m + 1) 
 Subst[Int[(a + b*x^Simplify[n/(m + 1)])^p, x], x, x^(m + 1)], x] /; FreeQ[ 
{a, b, m, n, p}, x] && IntegerQ[Simplify[n/(m + 1)]] &&  !IntegerQ[n]
 

rule 6888
Int[E^ArcSech[(a_.)*(x_)^(p_.)]/(x_), x_Symbol] :> -Simp[(a*p*x^p)^(-1), x] 
 + Simp[(Sqrt[1 + a*x^p]/a)*Sqrt[1/(1 + a*x^p)]   Int[Sqrt[1 + a*x^p]*(Sqrt 
[1 - a*x^p]/x^(p + 1)), x], x] /; FreeQ[{a, p}, x]
 
3.1.63.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 1.17 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.33

method result size
derivativedivides \(\frac {-\frac {\sqrt {-\frac {\left (a \,x^{p}-1\right ) x^{-p}}{a}}\, \sqrt {\frac {\left (1+a \,x^{p}\right ) x^{-p}}{a}}\, \left (\arctan \left (\frac {\operatorname {csgn}\left (a \right ) a \,x^{p}}{\sqrt {-a^{2} x^{2 p}+1}}\right ) a \,x^{p}+\sqrt {-a^{2} x^{2 p}+1}\, \operatorname {csgn}\left (a \right )\right ) \operatorname {csgn}\left (a \right )}{\sqrt {-a^{2} x^{2 p}+1}}-\frac {x^{-p}}{a}}{p}\) \(116\)
default \(\frac {-\frac {\sqrt {-\frac {\left (a \,x^{p}-1\right ) x^{-p}}{a}}\, \sqrt {\frac {\left (1+a \,x^{p}\right ) x^{-p}}{a}}\, \left (\arctan \left (\frac {\operatorname {csgn}\left (a \right ) a \,x^{p}}{\sqrt {-a^{2} x^{2 p}+1}}\right ) a \,x^{p}+\sqrt {-a^{2} x^{2 p}+1}\, \operatorname {csgn}\left (a \right )\right ) \operatorname {csgn}\left (a \right )}{\sqrt {-a^{2} x^{2 p}+1}}-\frac {x^{-p}}{a}}{p}\) \(116\)

input
int((1/a/(x^p)+(1/a/(x^p)-1)^(1/2)*(1/a/(x^p)+1)^(1/2))/x,x,method=_RETURN 
VERBOSE)
 
output
1/p*(-(-(a*x^p-1)/a/(x^p))^(1/2)*((1+a*x^p)/a/(x^p))^(1/2)*(arctan(csgn(a) 
*a*x^p/(-(x^p)^2*a^2+1)^(1/2))*a*x^p+(-(x^p)^2*a^2+1)^(1/2)*csgn(a))*csgn( 
a)/(-(x^p)^2*a^2+1)^(1/2)-1/a/(x^p))
 
3.1.63.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.17 \[ \int \frac {e^{\text {sech}^{-1}\left (a x^p\right )}}{x} \, dx=-\frac {a x^{p} \sqrt {\frac {a x^{p} + 1}{a x^{p}}} \sqrt {-\frac {a x^{p} - 1}{a x^{p}}} - a x^{p} \arctan \left (\sqrt {\frac {a x^{p} + 1}{a x^{p}}} \sqrt {-\frac {a x^{p} - 1}{a x^{p}}}\right ) + 1}{a p x^{p}} \]

input
integrate((1/a/(x^p)+(1/a/(x^p)-1)^(1/2)*(1/a/(x^p)+1)^(1/2))/x,x, algorit 
hm="fricas")
 
output
-(a*x^p*sqrt((a*x^p + 1)/(a*x^p))*sqrt(-(a*x^p - 1)/(a*x^p)) - a*x^p*arcta 
n(sqrt((a*x^p + 1)/(a*x^p))*sqrt(-(a*x^p - 1)/(a*x^p))) + 1)/(a*p*x^p)
 
3.1.63.6 Sympy [F]

\[ \int \frac {e^{\text {sech}^{-1}\left (a x^p\right )}}{x} \, dx=\frac {\int \frac {x^{- p}}{x}\, dx + \int \frac {a \sqrt {-1 + \frac {x^{- p}}{a}} \sqrt {1 + \frac {x^{- p}}{a}}}{x}\, dx}{a} \]

input
integrate((1/a/(x**p)+(1/a/(x**p)-1)**(1/2)*(1/a/(x**p)+1)**(1/2))/x,x)
 
output
(Integral(1/(x*x**p), x) + Integral(a*sqrt(-1 + 1/(a*x**p))*sqrt(1 + 1/(a* 
x**p))/x, x))/a
 
3.1.63.7 Maxima [F]

\[ \int \frac {e^{\text {sech}^{-1}\left (a x^p\right )}}{x} \, dx=\int { \frac {\sqrt {\frac {1}{a x^{p}} + 1} \sqrt {\frac {1}{a x^{p}} - 1} + \frac {1}{a x^{p}}}{x} \,d x } \]

input
integrate((1/a/(x^p)+(1/a/(x^p)-1)^(1/2)*(1/a/(x^p)+1)^(1/2))/x,x, algorit 
hm="maxima")
 
output
integrate(sqrt(a*x^p + 1)*sqrt(-a*x^p + 1)/(x*x^p), x)/a - 1/(a*p*x^p)
 
3.1.63.8 Giac [F]

\[ \int \frac {e^{\text {sech}^{-1}\left (a x^p\right )}}{x} \, dx=\int { \frac {\sqrt {\frac {1}{a x^{p}} + 1} \sqrt {\frac {1}{a x^{p}} - 1} + \frac {1}{a x^{p}}}{x} \,d x } \]

input
integrate((1/a/(x^p)+(1/a/(x^p)-1)^(1/2)*(1/a/(x^p)+1)^(1/2))/x,x, algorit 
hm="giac")
 
output
integrate((sqrt(1/(a*x^p) + 1)*sqrt(1/(a*x^p) - 1) + 1/(a*x^p))/x, x)
 
3.1.63.9 Mupad [F(-1)]

Timed out. \[ \int \frac {e^{\text {sech}^{-1}\left (a x^p\right )}}{x} \, dx=\int \frac {\sqrt {\frac {1}{a\,x^p}-1}\,\sqrt {\frac {1}{a\,x^p}+1}+\frac {1}{a\,x^p}}{x} \,d x \]

input
int(((1/(a*x^p) - 1)^(1/2)*(1/(a*x^p) + 1)^(1/2) + 1/(a*x^p))/x,x)
 
output
int(((1/(a*x^p) - 1)^(1/2)*(1/(a*x^p) + 1)^(1/2) + 1/(a*x^p))/x, x)