Chapter 1
Introduction

1.1 Listing of CAS systems tested
1.2 Results
1.3 Time and leaf size Performance
1.4 Performance based on number of rules Rubi used
1.5 Performance based on number of steps Rubi used
1.6 Solved integrals histogram based on leaf size of result
1.7 Solved integrals histogram based on CPU time used
1.8 Leaf size vs. CPU time used
1.9 Performance per integrand type
1.10 Maximum leaf size ratio for each CAS against the optimal result
1.11 Pass/Fail per test file for each CAS system
1.12 Timing
1.13 Verification
1.14 Important notes about some of the results
1.15 Current tree layout of integration tests
1.16 Design of the test system

This report gives the result of running the computer algebra independent integration problems.

The listing of the problems used by this report are

  1. MIT_bee_integration_problems.zip
  2. handbook_integration_problems.zip
  3. CAS_integration_tests_2023_Mathematica_format.m
  4. CAS_integration_tests_2023_Maple_and_Mupad_format.zip
  5. CAS_integration_tests_2023_SAGE_format.zip
  6. CAS_integration_tests_2023_Sympy_format.zip

The Mathematica/Rubi format file above can be read into Mathematica using the following commands

SetDirectory[NotebookDirectory[]] (*where the above .m file was save*) 
lst=First@ReadList["CAS_integration_tests_2023_Mathematica_format.m",Expression]; 
Length[lst]
 

lst[[1]] will be the first integrand,var and lst[[2]] will be the second one and so on.

The Rubi test suite files were downloaded from rulebasedintegration.org.

The current number of problems in this test suite is [106812].

1.1 Listing of CAS systems tested

The following are the CAS systems tested:

  1. Mathematica 14 (January 9, 2024) on windows 10 pro.
  2. Rubi 4.17.3 (Sept 25, 2023) on Mathematica 14 on windows 10m pro.
  3. Maple 2024 (March 1, 2024) on windows 10 pro.
  4. Maxima 5.47 (June 1, 2023) using Lisp SBCL 2.4.0 on Linux Manjaro 23.1.2 KDE via sagemath 10.3.
  5. FriCAS 1.3.10 built with sbcl 2.3.11 (January 10, 2024) on Linux Manjaro 23.1.2 KDE via sagemath 10.3.
  6. Giac/Xcas 1.9.0-99 on Linux via sagemath 10.3.
  7. Sympy 1.12 using Python 3.11.6 (Nov 14 2023, 09:36:21) [GCC 13.2.1 20230801] on Linux Manjaro 23.1.2 KDE.
  8. Mupad using Matlab 2021a with Symbolic Math Toolbox Version 8.7 on windows 10.
  9. Reduce CSL rev 6687 (January 9, 2024) on Linux Manjaro 23.1.2 KDE.

Maxima and Fricas and Giac are called using Sagemath. This was done using Sagemath integrate command by changing the name of the algorithm to use the different CAS systems.

Sympy was run directly in Python not via sagemath.

Reduce was called directly.

1.2 Results

Important note: A number of problems in this test suite have no antiderivative in closed form. This means the antiderivative of these integrals can not be expressed in terms of elementary, special functions or Hypergeometric2F1 functions.

If a CAS returns the above integral unevaluated within the time limit, then the result is counted as passed and assigned an A grade.

However, if CAS times out, then it is assigned an F grade even if the integral is not integrable, as this implies CAS could not determine that the integral is not integrable in the time limit.

If a CAS returns an antiderivative to such an integral, it is assigned an A grade automatically and this special result is listed in the introduction section of each individual test report to make it easy to identify as this can be important result to investigate.

The results given in in the table below reflects the above.

Table 1.1: Percentage solved for each CAS
System solved Failed
Mathematica % 97.367 ( 104000 ) % 2.633 ( 2812 )
Rubi % 93.136 ( 99480 ) % 6.864 ( 7332 )
Maple % 83.761 ( 89467 ) % 16.239 ( 17345 )
Fricas % 77.213 ( 82473 ) % 22.787 ( 24339 )
Giac % 57.511 ( 61429 ) % 42.489 ( 45383 )
Reduce % 54.34 ( 58042 ) % 45.66 ( 48770 )
Mupad % 52.841 ( 56440 ) % 47.159 ( 50372 )
Maxima % 52.537 ( 56116 ) % 47.463 ( 50696 )
Sympy % 42.166 ( 45038 ) % 57.834 ( 61774 )

The table below gives additional break down of the grading of quality of the antiderivatives generated by each CAS. The grading is given using the letters A,B,C and F with A being the best quality. The grading is accomplished by comparing the antiderivative generated with the optimal antiderivatives included in the test suite. The following table describes the meaning of these grades.

Table 1.2: Description of grading applied to integration result

grade

description

A

Integral was solved and antiderivative is optimal in quality and leaf size.

B

Integral was solved and antiderivative is optimal in quality but leaf size is larger than twice the optimal antiderivatives leaf size.

C

Integral was solved and antiderivative is non-optimal in quality. This can be due to one or more of the following reasons

  1. antiderivative contains a hypergeometric function and the optimal antiderivative does not.
  2. antiderivative contains a special function and the optimal antiderivative does not.
  3. antiderivative contains the imaginary unit and the optimal antiderivative does not.

F

Integral was not solved. Either the integral was returned unevaluated within the time limit, or it timed out, or CAS hanged or crashed or an exception was raised.

Grading is implemented for all CAS systems in this version except for CAS Mupad where a grade of B is automatically assigned as a place holder for all integrals it completes on time.

The following table summarizes the grading results.

Table 1.3: Antiderivative Grade distribution for each CAS
System % A grade % B grade % C grade % F grade
Rubi 84.74 2.5 2.12 6.86
Mathematica 73.46 5.21 15.02 2.63
Maple 58.11 14.06 7.21 16.24
Fricas 50.54 18.94 4.54 22.79
Giac 37.65 14.92 1.14 42.49
Maxima 36.59 10.61 1.54 47.46
Sympy 24.09 9.76 4.8 57.83
Reduce N/A 49.91 N/A 45.66
Mupad N/A 48.44 N/A 47.16

The following Bar chart is an illustration of the data in the above table.

pict

The figure below compares the CAS systems for each grade level.

pict

1.3 Time and leaf size Performance

The table below summarizes the performance of each CAS system in terms of time used and leaf size of results.

Mean size is the average leaf size produced by the CAS (before any normalization). The Normalized mean is relative to the mean size of the optimal anti-derivative given in the input files.

For example, if CAS has Normalized mean of \(3\), then the mean size of its leaf size is 3 times as large as the mean size of the optimal leaf size.

Median size is value of leaf size where half the values are larger than this and half are smaller (before any normalization). i.e. The Middle value.

Similarly the Normalized median is relative to the median leaf size of the optimal.

For example, if a CAS has Normalized median of \(1.2\), then its median is \(1.2\) as large as the median leaf size of the optimal.

Table 1.4: Time and leaf size performance for each CAS

System

Mean time (sec)

Mean size

Normalized mean

Median size

Normalized median

Maxima

0.25

774.72

238.38

69.

1.1

Rubi

0.67

165.33

1.4

106.

1.

Giac

0.9

594.73

43.61

78.

1.15

Fricas

0.94

1115.97

7.02

108.

1.37

Reduce

1.51

457.15

9.73

76.

1.31

Mathematica

2.5

369.49

2.4

85.

0.98

Maple

5.16

30161.5

336.1

89.

1.

Sympy

5.74

405.38

21.33

51.

1.12

Mupad

7.51

1442.7

10.3

66.

1.05

1.4 Performance based on number of rules Rubi used

This section shows how each CAS performed based on the number of rules Rubi needed to solve the same integral. One diagram is given for each CAS.

On the \(y\) axis is the percentage solved which Rubi itself needed the number of rules given the \(x\) axis. These plots show that as more rules are needed then most CAS system percentage of solving decreases which indicates the integral is becoming more complicated to solve.

1.5 Performance based on number of steps Rubi used

This section shows how each CAS performed based on the number of steps Rubi needed to solve the same integral. Note that the number of steps Rubi needed can be much higher than the number of rules, as the same rule could be used more than once.

The above diagram show that the precentage of solved intergals decreases for most CAS systems as the number of steps increases. As expected, for integrals that required less steps by Rubi, CAS systems had more success which indicates the integral was not as hard to solve. As Rubi needed more steps to solve the integral, the solved percentage decreased for most CAS systems which indicates the integral is becoming harder to solve.

1.6 Solved integrals histogram based on leaf size of result

The following shows the distribution of solved integrals for each CAS system based on leaf size of the antiderivatives produced by each CAS. It shows that most integrals solved produced leaf size less than about 100 to 150. The bin size used is \(40\).

1.7 Solved integrals histogram based on CPU time used

The following shows the distribution of solved integrals for each CAS system based on CPU time used in seconds. The bin size used is \(0.1\) second.

1.8 Leaf size vs. CPU time used

The following shows the relation between the CPU time used to solve an integral and the leaf size of the antiderivative.

The result for Fricas, Maxima and Giac is shifted more to the right than the other CAS system due to the use of sagemath to call them, which causes an initial slight delay in the timing to start the integration due to overhead of starting a new process each time. This should also be taken into account when looking at the timing of these three CAS systems. Direct calls not using sagemath would result in faster timings, but current implementation uses sagemath as this makes testing much easier to do.

1.9 Performance per integrand type

The following are the different integrand types the test suite contains.

  1. Independent tests.
  2. Algebraic Binomial problems (products involving powers of binomials and monomials).
  3. Algebraic Trinomial problems (products involving powers of trinomials, binomials and monomials).
  4. Miscellaneous Algebraic functions.
  5. Exponentials.
  6. Logarithms.
  7. Trigonometric.
  8. Inverse Trigonometric.
  9. Hyperbolic functions.
  10. Inverse Hyperbolic functions.
  11. Special functions.
  12. Sam Blake input files.
  13. Waldek Hebisch input file.
  14. MIT Bee integration.
  15. Few problems from Ryzhik and Gradshteyn table of integrals handbook.

The following table gives percentage solved of each CAS per integrand type.

Table 1.5: Percentage solved per integrand type
Integrand type # Rubi MMa Maple Maxima Fricas Sympy Giac Reduce Mupad
Independent tests 1968 98.88 99.24 94.51 82.83 95.68 76.73 87.6 77.29 82.72
Algebraic Binomial 25785 97.84 97.91 77.25 48.43 73.73 53.96 57.9 58.89 49.76
Algebraic Trinomial 13812 94.98 95.71 86.61 41.33 78.63 36.45 62.83 61.96 47.39
Algebraic Miscellaneous 2432 95.11 96.63 84.46 47.62 80.43 51.23 52.59 62.13 57.44
Exponentials 5375 98.83 97.51 77.67 49.66 82.9 33.04 52.91 67.83 53.95
Logarithms 3237 96.2 97.25 65.31 53.72 58.02 35.06 46.74 47.76 41.74
Trigonometric 23422 98.39 97.84 85.27 49. 79.55 17.16 50.54 35.58 49.76
Inverse Trigonometric 5082 99.35 98.58 89.81 35.58 46.03 37.01 48.15 39.14 35.36
Hyperbolic 5513 97.08 98.4 82.42 62.6 90.15 24.42 64.28 53.22 54.58
Inverse Hyperbolic 4349 99.63 98.92 82.69 45.5 49.9 24.88 30.35 29.8 30.83
Special functions 1738 95.51 93.1 71.17 35.5 62.6 40.85 25.2 28.19 35.67
Sam Blake files 3265 63.37 94.09 83.92 40.18 74.06 36.81 42.51 36.45 49.25
Waldek Hebisch file 10335 62.56 96.81 99.17 93.19 99.92 94.57 87.35 91.16 90.15
MIT Bee integration 321 94.7 99.38 95.95 92.52 95.95 81.93 92.21 81.93 90.03
Table of integrals 163 100. 100. 97.55 92.64 100. 88.34 100. 96.32 92.64

In addition to the above table, for each type of integrand listed above, 3D chart is made which shows how each CAS performed on that specific integrand type.

These charts and the table above can be used to show where each CAS relative strength or weakness in the area of integration.

pict

pict

pict

pict

pict

pict

pict

pict

pict

pict

pict

pict

pict

pict

pict

1.10 Maximum leaf size ratio for each CAS against the optimal result

The following table gives the largest ratio found in each test file, between each CAS antiderivative and the optimal antiderivative.

For each test input file, the problem with the largest ratio \(\frac {\text {CAS leaf size}}{\text {Optimal leaf size}}\) is recorded with the corresponding problem number.

In each column in the table below, the first number is the maximum leaf size ratio, and the number that follows inside the parentheses is the problem number in that specific file where this maximum ratio was found. This ratio is determined only when CAS solved the the problem and also when an optimal antiderivative is known.

If it happens that a CAS was not able to solve all the integrals in the input test file, or if it was not possible to obtain leaf size for the CAS result for all the problems in the file, then a zero is used for the ratio and -1 is used for the problem number.

This makes it easier to locate the problem. In the future, a direct link will be added as well.

#

Rubi

Mathematica

Maple

Maxima

FriCAS

Sympy

Giac

Mupad

Reduce

1

1.8 (133)

3.9 (50)

4.5 (170)

3.8 (169)

4. (45)

4789.3 (145)

4.2 (164)

0. (-1)

5.7 (61)

2

1.9 (26)

5. (26)

3.6 (17)

113.1 (21)

14.3 (13)

16.8 (5)

4.6 (2)

0. (-1)

1.8 (2)

3

1.1 (4)

1.1 (14)

2. (6)

11.1 (7)

2. (8)

1.9 (5)

1.9 (5)

0. (-1)

2.4 (1)

4

1.5 (72)

2. (11)

1.8 (11)

1.7 (11)

2.2 (20)

1.5 (69)

3.1 (67)

0. (-1)

3.9 (20)

5

6.8 (5)

14.3 (13)

11.7 (8)

29.7 (8)

5.5 (43)

4.8 (40)

5.3 (1)

0. (-1)

3.4 (30)

6

2. (225)

54.7 (278)

11.9 (280)

8.1 (280)

7.7 (280)

39.8 (123)

19.5 (141)

0. (-1)

8.4 (278)

7

1. (1)

1.4 (3)

2.2 (4)

1.9 (1)

1.4 (7)

0.8 (4)

2.3 (5)

0. (-1)

1.5 (7)

8

2.2 (3)

5.6 (7)

1.8 (3)

2.8 (3)

6.7 (9)

45.4 (9)

1.9 (3)

0. (-1)

1.8 (3)

9

2.9 (70)

5.3 (31)

4.6 (70)

6.5 (11)

5. (42)

26.4 (71)

5.8 (40)

0. (-1)

7.2 (31)

10

2.2 (112)

6.8 (316)

3.5 (323)

12.1 (328)

4.2 (341)

4789.3 (251)

15. (328)

0. (-1)

5.7 (14)

11

4. (604)

5.9 (446)

142.8 (417)

36.9 (399)

93.4 (137)

124.9 (217)

27.9 (625)

0. (-1)

9.9 (197)

12

7.7 (82)

5.4 (54)

16.4 (55)

2.7 (2)

13.4 (59)

43. (17)

6.6 (50)

0. (-1)

19.9 (49)

13

1.8 (6)

2.3 (4)

1.2 (8)

1.5 (2)

3.3 (3)

3.4 (3)

1.5 (2)

0. (-1)

1.8 (8)

14

1. (3)

1.3 (38)

2. (1)

1.7 (37)

4.5 (97)

11.7 (97)

19.3 (97)

0. (-1)

4.6 (97)

15

7.1 (798)

527.7 (115)

438.1 (115)

438.1 (115)

10.9 (185)

522.8 (115)

438.1 (115)

0. (-1)

438. (115)

16

1.7 (135)

10. (114)

13.5 (114)

8.6 (102)

11. (114)

36.1 (78)

6.5 (114)

0. (-1)

7. (114)

17

5.1 (641)

23.8 (117)

27.7 (117)

32.9 (117)

429.1 (673)

36.9 (754)

34. (117)

0. (-1)

34.6 (117)

18

1.5 (196)

9. (141)

9.7 (141)

10.1 (141)

10.1 (141)

53.8 (351)

10.1 (141)

0. (-1)

10.1 (141)

19

4.1 (141)

10. (269)

15.5 (281)

7. (223)

11. (269)

84.5 (306)

12.6 (97)

0. (-1)

8.5 (281)

20

2.2 (436)

15.3 (254)

10. (411)

6.3 (3)

13.8 (142)

63. (549)

46.7 (434)

0. (-1)

16.6 (362)

21

1.5 (264)

16.5 (91)

22. (91)

21.8 (91)

21.8 (91)

76.7 (230)

25.9 (91)

0. (-1)

13.5 (91)

22

2.3 (1492)

4.9 (1487)

19.7 (1188)

22.2 (480)

19.8 (1249)

76.7 (714)

28.1 (991)

0. (-1)

85.2 (480)

23

1.8 (177)

17.5 (104)

11.4 (195)

2. (159)

40.4 (102)

9.5 (237)

17.3 (205)

0. (-1)

44.7 (149)

24

6. (102)

10.4 (104)

32.1 (16)

2.8 (130)

12.7 (14)

49.2 (130)

15.8 (27)

0. (-1)

14.5 (25)

25

1. (1)

1.6 (1)

2.5 (30)

1.9 (29)

3.2 (30)

30.6 (30)

5.9 (30)

0. (-1)

3.1 (30)

26

1.5 (181)

1.9 (126)

13.1 (126)

4. (174)

9.7 (100)

143.6 (174)

19.9 (174)

0. (-1)

8.1 (174)

27

1.6 (12)

9.3 (88)

24.4 (82)

1.5 (22)

10.1 (81)

5.1 (4)

37. (75)

0. (-1)

53.4 (51)

28

1.6 (37)

36.4 (38)

5. (9)

1.7 (16)

2.4 (3)

0. (-1)

1.9 (16)

0. (-1)

7.1 (16)

29

1.3 (106)

3.8 (27)

1.5 (30)

4.8 (30)

4.1 (29)

30.6 (29)

2.9 (53)

0. (-1)

3.1 (17)

30

8.2 (713)

6.9 (712)

5.3 (196)

10. (196)

10. (196)

55.3 (538)

8. (444)

0. (-1)

13.7 (712)

31

1547. (517)

655. (517)

18. (357)

6.5 (302)

16.1 (42)

10.2 (24)

7.5 (302)

0. (-1)

16.8 (117)

32

15.5 (1368)

17.9 (996)

8.3 (1408)

8. (491)

16.3 (823)

46.9 (879)

13.9 (1260)

0. (-1)

39.2 (1037)

33

5.1 (307)

8.3 (569)

22.5 (50)

2.2 (364)

19.1 (373)

4.5 (234)

19.9 (336)

0. (-1)

43. (353)

34

3.1 (236)

3.2 (260)

10.4 (15)

2. (15)

7. (15)

53. (15)

13.8 (15)

0. (-1)

6.3 (15)

35

3.8 (97)

3.8 (97)

2.3 (73)

3.8 (97)

3.8 (97)

43.7 (107)

3.9 (73)

0. (-1)

5.2 (106)

36

1.6 (4)

1.1 (104)

6.5 (252)

3.4 (240)

11.7 (126)

48.7 (11)

9.3 (252)

0. (-1)

5.9 (136)

37

3.2 (45)

3.7 (24)

2.2 (52)

1.9 (57)

10.8 (8)

1.7 (4)

4.8 (8)

0. (-1)

8.2 (7)

38

2.3 (25)

6.3 (8)

12.2 (13)

0. (-1)

0. (-1)

0. (-1)

7.2 (4)

0. (-1)

25.8 (7)

39

1.7 (8)

2. (7)

1.5 (14)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

40

1.2 (30)

284.1 (30)

1.4 (35)

1.6 (24)

4.7 (26)

20.1 (30)

1.1 (9)

0. (-1)

1.8 (8)

41

1.5 (5)

1.9 (8)

3. (22)

3.8 (8)

2.5 (32)

20.1 (37)

3.2 (8)

0. (-1)

2.8 (7)

42

2. (35)

4.6 (36)

4.1 (151)

2.9 (95)

3754.9 (4)

35.5 (163)

3.1 (163)

0. (-1)

3.6 (139)

43

1.2 (447)

6.8 (86)

6.8 (437)

4.7 (96)

5.6 (86)

40.5 (444)

8.4 (437)

0. (-1)

6.8 (437)

44

2.4 (307)

2.7 (34)

3. (258)

4.1 (402)

3.5 (103)

23. (687)

5.3 (193)

0. (-1)

12.6 (333)

45

15.7 (204)

4.1 (245)

2.1 (233)

4.1 (426)

3.5 (69)

12.2 (499)

3.4 (496)

0. (-1)

12.6 (284)

46

1.5 (520)

6. (55)

7.5 (511)

6.1 (45)

60.2 (569)

84.8 (163)

11.5 (169)

0. (-1)

8.9 (540)

47

8.4 (604)

10. (448)

13.7 (447)

13.2 (176)

11.3 (447)

146.8 (156)

11.3 (447)

0. (-1)

11.2 (447)

48

1.3 (110)

13.4 (112)

15.7 (129)

5.9 (42)

38.1 (122)

41.4 (30)

28.5 (12)

0. (-1)

26.4 (84)

49

1.7 (20)

1.7 (5)

1.2 (14)

2.2 (13)

2.7 (13)

2.2 (26)

9.6 (66)

0. (-1)

2.6 (42)

50

1.9 (182)

13.7 (5)

14.2 (51)

4.1 (80)

5.3 (83)

12.9 (71)

1.7 (35)

0. (-1)

4.3 (28)

51

1.5 (51)

6.2 (78)

2.2 (106)

2.3 (91)

11.5 (27)

7.8 (83)

2.4 (21)

0. (-1)

6.4 (21)

52

1.4 (58)

48.5 (142)

6.7 (127)

2.1 (27)

15. (45)

38. (73)

6.1 (75)

0. (-1)

17.4 (45)

53

1.1 (6)

3.4 (5)

0. (-1)

0. (-1)

1.9 (1)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

54

2.1 (890)

7.7 (672)

15.7 (671)

2.8 (25)

41.3 (630)

36.6 (377)

9. (377)

0. (-1)

4.1 (377)

55

3.6 (274)

4.8 (193)

1.6 (112)

2.1 (75)

8.5 (216)

12. (204)

3.1 (228)

0. (-1)

82.7 (257)

56

8.8 (531)

13.6 (239)

11. (467)

29.1 (476)

11. (464)

112.6 (403)

53. (403)

0. (-1)

10.9 (464)

57

1.2 (6)

4.6 (43)

2.9 (37)

1.6 (16)

2.1 (36)

35.2 (43)

4.9 (3)

0. (-1)

3.4 (39)

58

1.4 (5)

29.7 (2)

6.2 (3)

0. (-1)

4.4 (6)

0. (-1)

2.1 (6)

0. (-1)

2.5 (6)

59

1.6 (83)

2. (9)

48.5 (33)

2.4 (33)

27. (33)

847.2 (33)

332.3 (33)

0. (-1)

29.8 (33)

60

1.2 (6)

4.6 (43)

2.9 (37)

1.6 (16)

2.1 (36)

35.2 (43)

4.9 (3)

0. (-1)

3.4 (39)

61

1.4 (100)

3.2 (22)

5. (21)

10. (37)

73.5 (25)

5.9 (39)

2.4 (33)

0. (-1)

3.2 (8)

62

5.9 (16)

1.9 (62)

2.3 (14)

3.1 (83)

4003.6 (100)

13. (45)

2.6 (37)

0. (-1)

6.1 (110)

63

5.8 (50)

2.1 (32)

1.4 (54)

1.7 (32)

153.2 (5)

29.7 (60)

4.7 (54)

0. (-1)

5.8 (29)

64

1.2 (271)

2. (166)

1.5 (256)

1.2 (205)

60.2 (205)

3.1 (203)

2. (32)

0. (-1)

4.5 (61)

65

1.5 (108)

1.6 (9)

1.3 (36)

1.3 (9)

1826.9 (9)

2. (13)

2.1 (9)

0. (-1)

5.1 (17)

66

1.2 (1)

1.3 (22)

3.1 (36)

2.1 (4)

5. (22)

5.6 (13)

8.1 (35)

0. (-1)

3.2 (8)

67

12.2 (5)

2.2 (4)

2.7 (1)

2.1 (5)

2. (5)

0. (-1)

4.2 (5)

0. (-1)

1.8 (5)

68

1.2 (2)

1. (1)

1.5 (3)

0.9 (1)

1.6 (1)

0.9 (1)

0.9 (1)

0. (-1)

2.3 (1)

69

0. (-1)

1. (1)

2.6 (1)

2.5 (1)

2.4 (1)

0. (-1)

8.2 (1)

0. (-1)

2.6 (1)

70

1.6 (381)

3.2 (341)

8.8 (149)

16.3 (71)

5. (150)

23.4 (336)

6.6 (336)

0. (-1)

7.6 (71)

71

1.7 (178)

4.7 (250)

96.2 (265)

28.7 (265)

64.3 (222)

71.7 (392)

9.9 (264)

0. (-1)

24.5 (290)

72

1053. (573)

92. (573)

13.2 (311)

2.5 (7)

6.2 (913)

141. (1230)

8. (1107)

0. (-1)

3.9 (1082)

73

7.2 (1618)

3.7 (1251)

170. (1152)

30.6 (1152)

54.5 (684)

260.1 (418)

11.5 (1772)

0. (-1)

26.5 (739)

74

1.7 (175)

2.4 (114)

4.9 (162)

20.5 (166)

3.9 (113)

10.5 (188)

6.5 (36)

0. (-1)

5.7 (36)

75

3.8 (354)

2.7 (204)

6.5 (203)

2.3 (203)

6.3 (203)

104.9 (203)

10.8 (203)

0. (-1)

7.5 (203)

76

1.6 (16)

5.7 (13)

7.5 (20)

3.1 (25)

8.6 (20)

12.8 (25)

4. (25)

0. (-1)

5.9 (9)

77

4.4 (159)

59.2 (275)

33.5 (49)

2.5 (207)

783. (158)

27.1 (7)

23.1 (284)

0. (-1)

39.1 (91)

78

1.8 (32)

3.2 (29)

5.4 (9)

3.4 (34)

238.5 (12)

3.3 (34)

41.7 (103)

0. (-1)

2.2 (61)

79

20.7 (56)

4.8 (36)

2.4 (126)

1.8 (36)

2.5 (103)

10.2 (126)

5.8 (28)

0. (-1)

2.4 (126)

80

3.8 (205)

2.9 (71)

4.4 (435)

4.9 (31)

4.2 (435)

44.7 (435)

10.8 (435)

0. (-1)

4.7 (435)

81

2.9 (234)

6.4 (231)

5.6 (231)

7.1 (11)

13.8 (120)

78.7 (238)

9.5 (238)

0. (-1)

12. (163)

82

1.5 (260)

1.8 (26)

10. (364)

4.5 (137)

8. (364)

128. (364)

23.1 (364)

0. (-1)

10.3 (364)

83

6.4 (121)

17. (49)

3.1 (211)

3.4 (89)

9.7 (47)

3.2 (70)

8.3 (106)

0. (-1)

12.3 (47)

84

1.4 (8)

1. (1)

1.6 (10)

1.5 (1)

2.2 (1)

0. (-1)

1.7 (9)

0. (-1)

1. (8)

85

2.8 (11)

3.5 (5)

1.7 (21)

0. (-1)

7.7 (9)

0. (-1)

6.8 (12)

0. (-1)

5.1 (12)

86

1.4 (342)

10. (306)

12.5 (309)

11.2 (327)

16.3 (176)

166.2 (416)

2304.6 (313)

0. (-1)

11.7 (416)

87

1.4 (121)

6.4 (283)

4.9 (273)

3.2 (179)

4.1 (123)

21.6 (273)

6.3 (273)

0. (-1)

4.9 (273)

88

17.5 (140)

6.2 (135)

3.1 (1)

6.3 (22)

7.9 (22)

9.7 (107)

3.1 (135)

0. (-1)

12. (22)

89

2. (163)

6.4 (51)

4.6 (18)

6.9 (18)

12.6 (264)

19.6 (77)

12.1 (281)

0. (-1)

18.6 (281)

90

1.3 (199)

9.7 (100)

11.2 (100)

34.4 (399)

14.3 (200)

137.9 (411)

37.7 (5)

0. (-1)

13.7 (100)

91

22.1 (331)

3.3 (36)

26.6 (265)

14. (382)

8.9 (382)

55.8 (235)

30.1 (273)

0. (-1)

10.8 (69)

92

12.9 (698)

13.8 (216)

25.5 (602)

17.5 (371)

67.3 (544)

239.3 (761)

35.4 (592)

0. (-1)

76.1 (371)

93

3.3 (116)

5.8 (78)

21.4 (45)

6.4 (56)

13.5 (54)

2.3 (18)

3.5 (56)

0. (-1)

23.4 (54)

94

12.5 (16)

6.9 (16)

7.9 (16)

11.9 (16)

46.2 (128)

123.8 (295)

134.1 (140)

0. (-1)

39.6 (183)

95

4.2 (140)

9. (7)

73.7 (109)

2.9 (156)

34.7 (108)

104.4 (156)

58.2 (12)

0. (-1)

10.2 (156)

96

1.7 (131)

6.1 (77)

115.8 (60)

0.8 (87)

7.1 (76)

5.8 (28)

21.7 (127)

0. (-1)

16.5 (136)

97

1.5 (51)

2.9 (249)

40.4 (274)

6.1 (163)

16. (294)

58.7 (159)

79. (193)

0. (-1)

92.7 (281)

98

1.3 (243)

2.8 (228)

4.4 (162)

2.5 (172)

27.6 (91)

1537.6 (88)

16.5 (99)

0. (-1)

41.2 (167)

99

3. (27)

10.7 (87)

43.1 (85)

5.8 (326)

33.1 (51)

133.2 (312)

41. (85)

0. (-1)

47.5 (34)

100

1.3 (74)

4.5 (108)

4.6 (167)

3.2 (167)

18.2 (85)

122.2 (167)

13.8 (167)

0. (-1)

19.5 (125)

101

3.9 (1104)

26.2 (898)

322.2 (913)

50.9 (2)

78.6 (590)

973.9 (147)

83.4 (1001)

0. (-1)

60.2 (977)

102

18.2 (731)

66.5 (648)

116.2 (666)

14.7 (731)

62. (661)

308. (771)

197.8 (739)

0. (-1)

31.2 (388)

103

18.2 (814)

68.4 (556)

454.7 (372)

14.7 (814)

68.7 (359)

308. (854)

197.8 (822)

0. (-1)

92.7 (772)

104

1.2 (5)

1.1 (10)

3.3 (5)

1. (4)

6.3 (5)

3.9 (8)

2. (6)

0. (-1)

2.5 (2)

105

5.5 (26)

10.3 (37)

24.4 (144)

6.4 (26)

30.2 (150)

11. (23)

92.3 (39)

0. (-1)

84.8 (39)

106

1.4 (55)

9.5 (111)

14650.2 (88)

89. (201)

89. (201)

135.3 (194)

123.4 (201)

0. (-1)

147.9 (85)

107

5.5 (37)

4.9 (36)

8.8 (36)

3. (21)

10.2 (10)

10.1 (26)

8.5 (36)

0. (-1)

14.6 (34)

108

1.8 (57)

9.1 (141)

226.5 (100)

79.6 (100)

7.4 (114)

12.4 (117)

23. (98)

0. (-1)

25.9 (112)

109

228. (1)

259. (1)

669. (1)

89. (111)

6132. (1)

232.5 (203)

123.4 (111)

0. (-1)

6499. (1)

110

3.7 (259)

12.2 (230)

5.9 (1)

5.4 (160)

21.6 (1)

8.7 (74)

6.2 (73)

0. (-1)

25.5 (118)

111

2.5 (41)

3.9 (50)

7.7 (29)

2.2 (32)

15.9 (29)

10.1 (33)

1.8 (29)

0. (-1)

9.6 (29)

112

3.5 (25)

7130. (1)

1903. (1)

2.3 (34)

8.5 (18)

1.4 (41)

31.2 (33)

0. (-1)

93.5 (41)

113

1.2 (8)

2.8 (7)

1.3 (23)

4.7 (23)

1.9 (23)

1.1 (1)

1.8 (7)

0. (-1)

12.4 (25)

114

2.9 (128)

8.8 (82)

7. (82)

1.5 (331)

32.8 (335)

6.6 (334)

10.7 (326)

0. (-1)

19.1 (327)

115

3.7 (719)

6.1 (491)

5. (1083)

5.4 (399)

36.3 (946)

27.8 (1083)

15.9 (898)

0. (-1)

34.1 (964)

116

5. (77)

21. (174)

17.5 (2)

7. (212)

40.5 (174)

23.7 (372)

2.7 (203)

0. (-1)

7.9 (323)

117

1.4 (4)

4.7 (14)

22.4 (22)

0. (-1)

7.4 (30)

0. (-1)

0.7 (15)

0. (-1)

11.4 (14)

118

14. (1071)

33.1 (819)

8.5 (583)

5.6 (557)

69.1 (689)

80.3 (583)

60.3 (713)

0. (-1)

58.1 (962)

119

18.4 (22)

3.6 (100)

3.1 (17)

2.2 (24)

3428.4 (33)

48.5 (28)

26.2 (53)

0. (-1)

28.5 (54)

120

1.5 (177)

5.3 (140)

13.8 (38)

1.7 (189)

4782.7 (22)

119.4 (38)

20.4 (61)

0. (-1)

20. (128)

121

3.4 (35)

51.4 (154)

21.6 (152)

0. (-1)

10.2 (150)

2.3 (1)

6.8 (153)

0. (-1)

12.7 (152)

122

1.7 (1)

2.2 (6)

2.7 (101)

0. (-1)

6.7 (26)

0. (-1)

2.2 (27)

0. (-1)

3.5 (90)

123

1.5 (60)

11.1 (99)

3. (69)

3.5 (69)

12.7 (55)

25.3 (94)

11.8 (21)

0. (-1)

8. (64)

124

2.5 (139)

7. (92)

3. (233)

5.1 (47)

5.4 (176)

14.5 (233)

4.5 (233)

0. (-1)

4.2 (139)

125

1.9 (93)

6.1 (40)

1.3 (83)

1.2 (5)

28.9 (62)

3.9 (45)

11.2 (52)

0. (-1)

8.8 (86)

126

1.6 (162)

10.7 (244)

18.8 (240)

5.8 (266)

44.4 (289)

342.5 (240)

128.3 (240)

0. (-1)

19.4 (240)

127

4.7 (18)

41. (6)

6.4 (6)

1. (2)

10.4 (14)

7.4 (34)

2.4 (14)

0. (-1)

1.8 (15)

128

2.5 (20)

68.3 (18)

5.7 (20)

1.8 (62)

29.9 (59)

42.2 (62)

15.3 (55)

0. (-1)

8.8 (62)

129

1.4 (31)

2.8 (4)

1.5 (34)

1.2 (5)

18.7 (41)

4.7 (36)

2.2 (53)

0. (-1)

4.7 (3)

130

2.1 (65)

1.7 (65)

1.7 (108)

0.9 (66)

74.9 (84)

4.5 (48)

49.1 (113)

0. (-1)

30.5 (91)

131

2.8 (9)

25.1 (173)

88.8 (83)

88.7 (83)

77.1 (80)

82.9 (80)

73.6 (83)

0. (-1)

90.5 (80)

132

1.4 (13)

51. (23)

1.7 (16)

1.8 (16)

1.8 (16)

3.2 (16)

3.3 (16)

0. (-1)

1.6 (16)

133

1. (5)

2.2 (4)

3.1 (5)

2.1 (5)

2.2 (5)

1.9 (2)

3.3 (5)

0. (-1)

1.4 (3)

134

103. (1)

4.4 (7)

0. (-1)

0. (-1)

0. (-1)

4.8 (3)

0. (-1)

0. (-1)

0.1 (8)

135

3.6 (38)

6.2 (39)

5053. (40)

1.3 (37)

18. (39)

4.5 (7)

6.1 (11)

0. (-1)

19.3 (12)

136

1.8 (43)

3.4 (58)

55.5 (42)

0. (-1)

1.5 (38)

0. (-1)

2.4 (54)

0. (-1)

3.7 (45)

137

1.2 (3)

2.9 (5)

58.8 (7)

1.7 (2)

4.3 (13)

141.7 (17)

2.6 (5)

0. (-1)

4. (7)

138

1.7 (68)

1.6 (82)

17.7 (82)

1.6 (82)

12.7 (82)

22.9 (84)

40.8 (82)

0. (-1)

23.9 (77)

139

2.2 (7)

1.5 (7)

1.1 (1)

0.9 (1)

0.9 (1)

1. (2)

1. (2)

0. (-1)

1. (1)

140

237. (1)

202. (1)

150273. (1)

321. (1)

55772. (1)

771647. (2)

33969. (2)

0. (-1)

124219. (1)

141

1.1 (4)

1. (1)

0.8 (7)

0.8 (4)

1. (8)

0.9 (7)

0.9 (4)

0. (-1)

1. (8)

142

7.9 (131)

13. (142)

22.5 (30)

22.2 (125)

16. (141)

16.3 (19)

14.4 (125)

0. (-1)

85.2 (125)

143

6.7 (96)

916.2 (159)

6.7 (149)

13.7 (114)

70.3 (164)

1277.6 (139)

14.4 (114)

0. (-1)

161.1 (144)

144

2.1 (19)

19.3 (64)

13.8 (51)

1.5 (31)

9346.9 (24)

18.6 (7)

61.6 (49)

0. (-1)

24. (49)

145

1.8 (64)

15.6 (38)

7.8 (41)

1.6 (17)

14716.2 (31)

113.9 (62)

2.7 (6)

0. (-1)

24.4 (26)

146

3.3 (35)

4.4 (21)

11.7 (19)

42.3 (19)

11.6 (19)

13.2 (19)

11.6 (19)

0. (-1)

11.7 (19)

147

4.7 (70)

11.3 (258)

20.8 (141)

16.8 (80)

2411.1 (236)

20.2 (80)

129.9 (245)

0. (-1)

20.1 (80)

148

4.3 (16)

11.6 (4)

146.6 (224)

29.1 (13)

780.5 (84)

163.8 (35)

12.5 (36)

0. (-1)

10.2 (2)

149

2.4 (513)

3.5 (535)

2.3 (536)

3.2 (370)

5.5 (197)

6.9 (416)

2.6 (432)

0. (-1)

1.6 (528)

150

3.3 (73)

3.1 (132)

49.7 (189)

11.5 (30)

5.6 (194)

4.4 (176)

4.1 (184)

0. (-1)

4.7 (194)

151

4.3 (60)

3.3 (69)

1.4 (21)

0. (-1)

2.1 (53)

21.8 (15)

0.8 (76)

0. (-1)

4.7 (37)

152

1.2 (19)

9. (16)

0. (-1)

0. (-1)

2.6 (20)

0. (-1)

4.1 (7)

0. (-1)

7. (20)

153

2.5 (51)

15.5 (38)

3.1 (22)

1.6 (25)

4.1 (15)

6.8 (52)

16.9 (14)

0. (-1)

7.4 (30)

154

4.1 (377)

1113.9 (276)

70.8 (50)

5.1 (95)

40.5 (214)

9.8 (187)

12.5 (213)

0. (-1)

8.1 (22)

155

8.8 (1)

6. (571)

39. (201)

125.2 (201)

28.5 (226)

11.9 (485)

53.7 (485)

0. (-1)

37.2 (201)

156

4.3 (3)

1.5 (37)

8. (122)

7.4 (2)

2.1 (26)

3. (14)

62.4 (38)

0. (-1)

1.8 (38)

157

1.4 (83)

1.7 (96)

16. (33)

3.8 (95)

3.9 (17)

9.7 (69)

37.4 (19)

0. (-1)

4.3 (95)

158

1.6 (18)

1.6 (4)

16. (46)

2.5 (46)

4.6 (58)

3.2 (25)

37.7 (39)

0. (-1)

2.6 (25)

159

1.9 (358)

2.7 (262)

13.5 (71)

8.6 (194)

10. (389)

11.6 (389)

7.9 (389)

0. (-1)

10. (199)

160

1.1 (7)

82. (17)

1. (2)

100. (13)

125. (17)

37. (13)

77. (13)

0. (-1)

1.1 (5)

161

1.2 (5)

1.5 (4)

5.1 (9)

4.6 (4)

2.4 (4)

4. (4)

6. (9)

0. (-1)

3.2 (9)

162

1.1 (4)

2.2 (4)

4.7 (4)

4.6 (4)

3.1 (6)

2.8 (4)

4.9 (4)

0. (-1)

3.5 (9)

163

2.3 (913)

3.7 (913)

14.5 (228)

18.3 (1189)

12.2 (1406)

31. (1034)

9.7 (1406)

0. (-1)

15.6 (904)

164

2.5 (297)

78. (5)

168. (5)

57. (1)

119. (8)

15.5 (461)

53. (1)

0. (-1)

2.9 (63)

165

91. (42)

145. (42)

40.3 (32)

1.1 (51)

2.9 (80)

1.5 (50)

4.2 (46)

0. (-1)

5.9 (34)

166

64. (24)

57. (24)

5.2 (44)

2.7 (5)

3.6 (5)

65. (36)

2.8 (5)

0. (-1)

6.7 (32)

167

2.3 (898)

3.7 (898)

14.5 (213)

18.3 (1174)

12.2 (1391)

31. (1019)

9.7 (1391)

0. (-1)

15.6 (889)

168

1.6 (202)

13.1 (44)

39.2 (172)

10.6 (23)

11.2 (91)

15.9 (189)

15.3 (28)

0. (-1)

15. (91)

169

1.2 (15)

1.3 (133)

10.6 (99)

4.9 (149)

5. (150)

11. (150)

10.2 (81)

0. (-1)

3.4 (150)

170

2.1 (71)

3.9 (361)

33.8 (438)

5.1 (346)

20.3 (438)

29.5 (318)

11. (390)

0. (-1)

25.6 (438)

171

1.6 (221)

12.4 (70)

94.2 (93)

2.9 (172)

10.1 (243)

2.4 (252)

45.6 (193)

0. (-1)

3.9 (243)

172

1.7 (249)

39.2 (308)

20.1 (156)

7.4 (10)

7.3 (171)

7. (6)

56. (66)

0. (-1)

27. (270)

173

1.4 (256)

16.3 (81)

12.5 (213)

79.5 (81)

9.2 (212)

8. (71)

17.7 (108)

0. (-1)

9.7 (81)

174

1.9 (39)

51.5 (68)

11.2 (75)

14.2 (44)

4.5 (15)

4.3 (27)

12.4 (34)

0. (-1)

48.7 (34)

175

2.6 (133)

12.4 (497)

31.3 (88)

9. (341)

8.8 (423)

38.1 (446)

35. (475)

0. (-1)

7.1 (446)

176

1.8 (503)

38.5 (131)

13.2 (148)

7.4 (390)

33.9 (197)

34.4 (183)

13.8 (45)

0. (-1)

41.4 (197)

177

0.9 (7)

5.4 (27)

21. (27)

4.8 (27)

5.2 (27)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

178

1.5 (289)

5. (360)

10.3 (231)

2.6 (126)

4.6 (414)

32.3 (355)

3.4 (340)

0. (-1)

5.5 (130)

179

1.1 (47)

3.3 (34)

4.3 (77)

2.5 (6)

5.7 (79)

17.1 (75)

2.8 (33)

0. (-1)

2. (63)

180

2.2 (612)

47.7 (614)

9. (603)

9. (151)

24.4 (506)

68.3 (341)

248.2 (364)

0. (-1)

51.5 (88)

181

2. (114)

35. (118)

3.1 (17)

4. (53)

7. (201)

2.6 (40)

86.2 (156)

0. (-1)

12.7 (192)

182

1.9 (628)

357.8 (774)

1249.3 (802)

30.7 (264)

15.9 (718)

79.3 (478)

19.3 (640)

0. (-1)

25.2 (719)

183

2.1 (466)

24.7 (1558)

56.7 (174)

8.6 (46)

15.7 (934)

223.9 (697)

424.5 (175)

0. (-1)

21.1 (1355)

184

1.5 (12)

49.4 (31)

641. (48)

7.2 (16)

28.8 (35)

3.4 (1)

2.4 (6)

0. (-1)

8.2 (39)

185

1.3 (335)

9.3 (100)

1296.8 (353)

35.1 (48)

16.5 (327)

66.6 (265)

256.7 (14)

0. (-1)

23.6 (285)

186

1. (13)

10.5 (13)

2.7 (2)

12.4 (1)

2.3 (2)

13.1 (3)

24.8 (1)

0. (-1)

1.8 (9)

187

1.5 (30)

2.4 (17)

5.2 (15)

3.3 (19)

2.2 (17)

2.3 (30)

0.9 (30)

0. (-1)

1.3 (30)

188

6.2 (79)

2.5 (38)

7.4 (127)

15.3 (100)

3554.2 (74)

542.9 (50)

15.4 (32)

0. (-1)

42.1 (139)

189

1.9 (178)

11.6 (505)

2431.2 (524)

17.6 (418)

198.5 (324)

9937.7 (40)

544.2 (299)

0. (-1)

33.7 (257)

190

1.1 (9)

2.2 (2)

1.3 (6)

1.3 (2)

4.6 (1)

11.7 (4)

2.3 (2)

0. (-1)

3.6 (2)

191

1.2 (18)

1.5 (8)

1.3 (13)

1. (19)

51.7 (13)

2.8 (11)

1.9 (14)

0. (-1)

1.3 (11)

192

1.5 (58)

12.7 (250)

10.5 (343)

21.4 (209)

13.1 (209)

30. (193)

633.3 (22)

0. (-1)

3.9 (322)

193

2.1 (109)

1.8 (113)

3.5 (27)

21.3 (45)

1.7 (38)

2.2 (12)

69.6 (38)

0. (-1)

1.7 (12)

194

1.2 (110)

3.3 (203)

7.8 (201)

168.3 (37)

4.7 (44)

23.3 (45)

13.9 (217)

0. (-1)

2.1 (45)

195

1.1 (11)

1.1 (10)

1.4 (29)

8.1 (33)

1.1 (10)

3.9 (12)

1.6 (13)

0. (-1)

0. (-1)

196

39. (7)

87. (19)

361. (21)

502. (30)

186. (18)

381. (17)

324. (26)

0. (-1)

282. (18)

197

1.2 (60)

3.7 (284)

8.3 (12)

16.5 (170)

4.1 (42)

2.5 (64)

12.5 (64)

0. (-1)

1.7 (44)

198

1.1 (21)

2.6 (61)

3.4 (50)

788.2 (7)

6.2 (52)

6. (41)

1.5 (6)

0. (-1)

1.9 (41)

199

4.3 (11)

4.3 (89)

5.5 (80)

3.2 (3)

4.2 (32)

35.5 (25)

3.7 (11)

0. (-1)

3.9 (22)

200

1.5 (16)

3.2 (1)

4.3 (20)

4.1 (3)

4.1 (20)

0. (-1)

3. (3)

0. (-1)

4.7 (11)

201

1.5 (28)

4.4 (139)

8.3 (76)

12.1 (133)

6.9 (33)

4.1 (9)

627.4 (22)

0. (-1)

3.4 (35)

202

1.5 (45)

1.3 (94)

4.2 (26)

4.2 (86)

1.4 (87)

6. (61)

4.3 (35)

0. (-1)

1.2 (37)

203

1.1 (11)

1. (10)

1.4 (29)

8.1 (32)

1.1 (10)

3.8 (12)

1.6 (13)

0. (-1)

0. (-1)

204

1.4 (370)

34.4 (773)

7.5 (598)

6489.4 (123)

7.2 (484)

208.2 (474)

28.4 (782)

0. (-1)

11.8 (485)

205

1.1 (1)

2.8 (2)

2.4 (2)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

206

1. (1)

3. (1)

1.3 (1)

3.5 (1)

1.7 (1)

0. (-1)

1.5 (1)

0. (-1)

2.3 (1)

207

1.3 (496)

36.7 (454)

8.3 (79)

7944.2 (100)

8.1 (279)

77.7 (251)

7.2 (259)

0. (-1)

5.6 (280)

208

1.2 (268)

53.1 (393)

5.2 (59)

20.3 (115)

3.4 (319)

9. (35)

39.9 (35)

0. (-1)

4.5 (7)

209

1.5 (940)

41.8 (1158)

11.2 (398)

7808.5 (402)

7.5 (1007)

29.3 (565)

7.5 (994)

0. (-1)

17.4 (592)

210

1.6 (23)

1.8 (7)

4.6 (49)

18.9 (40)

3020.2 (18)

364.1 (22)

5.5 (7)

0. (-1)

12.8 (66)

211

1.3 (32)

2.6 (30)

5.9 (41)

5.5 (46)

6.9 (23)

1914.1 (28)

3.7 (47)

0. (-1)

7.6 (31)

212

1.2 (14)

2.1 (9)

2. (17)

1. (2)

15.2 (14)

13.9 (4)

7. (4)

0. (-1)

10.7 (15)

213

1.2 (11)

1.9 (5)

1.4 (20)

0.8 (11)

51.4 (8)

3.2 (12)

66.7 (8)

0. (-1)

15.2 (1)

214

1.5 (92)

19.4 (184)

186.8 (52)

1.3 (7)

5. (317)

3. (376)

2.3 (351)

0. (-1)

1.3 (1)

215

1.7 (555)

30.1 (617)

60.4 (628)

19. (393)

8.6 (80)

40. (172)

772.4 (550)

0. (-1)

73.6 (574)

216

1.6 (57)

7. (46)

1.8 (42)

2.9 (67)

7.5 (75)

1.3 (2)

324.8 (32)

0. (-1)

8.7 (74)

217

1.5 (507)

242.3 (678)

11965. (516)

141. (1121)

226.8 (1313)

68.3 (1213)

11.9 (657)

0. (-1)

31.4 (1222)

218

1.5 (365)

145.1 (338)

15275. (454)

144. (373)

197.8 (463)

42.4 (280)

5.4 (477)

0. (-1)

4.3 (295)

219

1.2 (152)

3777.8 (109)

123.6 (126)

3. (83)

406.4 (150)

145.8 (74)

5.4 (83)

0. (-1)

33. (83)

220

2.1 (386)

44. (159)

612.9 (479)

18.1 (272)

20.7 (379)

62.9 (245)

776.9 (30)

0. (-1)

61.3 (82)

221

1.1 (20)

3.4 (19)

30046.9 (4)

0. (-1)

104.6 (22)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

222

1.3 (1)

4.5 (44)

9.4 (61)

11.2 (49)

4.9 (54)

2.5 (24)

6. (22)

0. (-1)

1.3 (16)

223

1.1 (21)

2.5 (44)

1.1 (21)

7.9 (52)

4.5 (39)

16.9 (21)

1.7 (21)

0. (-1)

2.6 (21)

224

1.3 (13)

9.4 (48)

1.6 (1)

1.3 (4)

4.9 (20)

2.6 (1)

2.3 (2)

0. (-1)

2.8 (1)

225

1.9 (15)

2.5 (11)

2.1 (9)

3.3 (11)

4. (7)

1.3 (2)

2.5 (7)

0. (-1)

3.1 (13)

226

145. (15)

400. (15)

311. (15)

396. (15)

236. (15)

1.2 (2)

329. (15)

0. (-1)

784. (20)

227

1.5 (44)

3.8 (22)

26.7 (102)

1.9 (94)

40.1 (103)

35.7 (93)

2.4 (94)

0. (-1)

1.7 (94)

228

1.4 (57)

13.4 (37)

7.1 (30)

22.4 (42)

13.3 (57)

59.8 (7)

17.1 (37)

0. (-1)

3.9 (7)

229

1.1 (13)

3.8 (21)

31763.8 (3)

0. (-1)

98.2 (11)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

230

1.5 (1)

5.6 (42)

9.4 (59)

18.7 (47)

4.9 (59)

2.4 (22)

33.1 (8)

0. (-1)

2.5 (8)

231

1.4 (54)

4.7 (42)

7.4 (269)

25.9 (47)

5.7 (42)

3.3 (1)

11.7 (42)

0. (-1)

5.7 (42)

232

2.1 (819)

251.5 (874)

8.1 (839)

1460.2 (263)

7. (515)

2.6 (5)

5.8 (513)

0. (-1)

11.5 (514)

233

1.6 (140)

40.2 (153)

4.2 (290)

2.9 (65)

5.2 (110)

0. (-1)

4.5 (230)

0. (-1)

12.8 (224)

234

1.8 (319)

19.3 (232)

19. (335)

3.7 (67)

37.3 (336)

13.1 (90)

6.1 (295)

0. (-1)

20.6 (296)

235

1.4 (83)

84.4 (211)

74.6 (153)

37.5 (109)

8.8 (159)

0. (-1)

5.1 (159)

0. (-1)

12.8 (197)

236

2.5 (212)

227.9 (265)

13.3 (243)

43.2 (130)

15.3 (263)

3. (170)

4.3 (256)

0. (-1)

23.9 (258)

237

1.4 (346)

374.7 (634)

8.5 (171)

1629.1 (267)

8.2 (336)

2.2 (47)

6.9 (335)

0. (-1)

5. (336)

238

1.1 (48)

5.1 (25)

4.9 (19)

13.5 (25)

2.6 (58)

2.9 (33)

2.7 (41)

0. (-1)

4.5 (4)

239

1.4 (930)

471.8 (1351)

9. (1067)

2062.5 (624)

7.8 (923)

3. (930)

7.6 (489)

0. (-1)

14.7 (923)

240

1.5 (19)

65.3 (138)

67. (431)

58. (256)

27.3 (461)

6. (459)

15. (389)

0. (-1)

15.5 (367)

241

1. (1)

13.2 (39)

4.1 (29)

14.9 (16)

5.1 (6)

0. (-1)

5.7 (18)

0. (-1)

1. (13)

242

1.2 (68)

3.2 (18)

5.7 (73)

120.4 (20)

4.5 (68)

2.2 (53)

4.2 (20)

0. (-1)

3.2 (68)

243

1.4 (54)

3. (42)

5.7 (21)

33.4 (39)

3.8 (42)

3.1 (1)

3.1 (41)

0. (-1)

1.7 (2)

244

1.3 (50)

5.3 (36)

6.6 (15)

6.4 (13)

7.8 (20)

0. (-1)

13.6 (15)

0. (-1)

7.5 (51)

245

1.5 (15)

2.5 (8)

2. (9)

4.9 (8)

3.7 (14)

0. (-1)

2.2 (8)

0. (-1)

3.8 (15)

246

1.3 (20)

3.3 (10)

1.9 (5)

3.5 (1)

5. (22)

0. (-1)

2.2 (10)

0. (-1)

6.5 (12)

247

1.3 (6)

2.2 (3)

2.1 (8)

2.5 (8)

2.3 (9)

3.2 (8)

3.3 (12)

0. (-1)

2. (8)

248

1. (1)

1.2 (1)

1.8 (1)

0. (-1)

1.4 (1)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

249

1.2 (7)

3.1 (18)

7.3 (15)

39.7 (11)

16.6 (11)

0. (-1)

5.3 (16)

0. (-1)

38.3 (8)

250

1.3 (27)

4.2 (25)

5.2 (74)

39.4 (15)

4.6 (69)

2.3 (53)

2.9 (61)

0. (-1)

3.1 (27)

251

2. (50)

4.5 (102)

3.1 (3)

48.6 (89)

2.6 (88)

13.6 (15)

238.6 (66)

0. (-1)

2.6 (77)

252

8.8 (128)

4.5 (73)

5.5 (8)

13. (82)

2. (102)

17. (87)

2104.7 (129)

0. (-1)

7.1 (44)

253

4. (22)

2.7 (29)

2.5 (12)

16.4 (22)

7.2 (20)

35.2 (22)

47.7 (20)

0. (-1)

14.3 (7)

254

10.8 (702)

718.9 (361)

170.3 (378)

5742.6 (430)

264.3 (437)

4789.3 (407)

808.7 (345)

0. (-1)

73.7 (490)

255

3.3 (23)

24.3 (272)

4.6 (211)

9.5 (209)

8.5 (143)

18.8 (124)

406.5 (236)

0. (-1)

34. (142)

256

7.7 (600)

1972. (326)

4100740.7 (487)

2494919. (184)

1339. (108)

6948.3 (449)

1957357. (237)

0. (-1)

106.1 (75)

257

1.8 (299)

9.8 (164)

9.4 (331)

58.8 (171)

13.9 (273)

10.3 (396)

5930.5 (96)

0. (-1)

6. (80)

258

1. (1)

2.7 (1)

6.9 (9)

0.4 (5)

12. (4)

1.1 (5)

0.7 (5)

0. (-1)

0.4 (5)

259

4.3 (259)

7.9 (276)

8.4 (1)

90.9 (225)

4.2 (235)

5.6 (18)

2097.9 (70)

0. (-1)

7.2 (259)

260

19.2 (46)

9.1 (145)

1.8 (82)

81.3 (46)

4.2 (75)

16.2 (57)

264.4 (43)

0. (-1)

6. (75)

261

6697. (6)

547. (6)

374. (6)

158. (33)

640. (6)

3.6 (19)

311. (6)

0. (-1)

0. (-1)

262

1.7 (26)

11.3 (344)

7.7 (276)

12.1 (56)

3.6 (6)

8.1 (85)

16.6 (134)

0. (-1)

4.5 (87)

263

1.1 (14)

2. (8)

2.9 (14)

2.4 (1)

1.7 (1)

2.7 (1)

8.5 (8)

0. (-1)

2.4 (1)

264

1.7 (30)

2.5 (28)

4.3 (25)

1.8 (24)

1.7 (7)

2.2 (11)

11.5 (53)

0. (-1)

1.8 (24)

265

1.5 (12)

2.6 (6)

10.1 (57)

3.1 (12)

5.9 (169)

3.8 (46)

7.3 (87)

0. (-1)

1.6 (153)

266

2.4 (172)

3.9 (475)

19.9 (90)

3.3 (192)

6. (468)

2.9 (377)

56.7 (447)

0. (-1)

16.3 (460)

267

1.3 (101)

5962. (103)

15.5 (127)

1.8 (170)

8.6 (167)

2.9 (177)

3.5 (22)

0. (-1)

2.1 (170)

268

1.1 (4)

1.7 (5)

1. (28)

0.9 (28)

0.9 (28)

1.5 (15)

1.3 (3)

0. (-1)

1. (28)

269

1.2 (40)

11. (91)

7.7 (50)

2.2 (1)

5.7 (6)

2. (35)

4.6 (57)

0. (-1)

2.1 (8)

270

1.1 (3)

2.1 (1)

2.9 (14)

2.4 (1)

1.7 (1)

2.7 (1)

8.5 (8)

0. (-1)

2.4 (1)

271

1.8 (32)

4.9 (41)

2.7 (157)

1.8 (155)

3. (7)

2.3 (11)

26.4 (147)

0. (-1)

1.8 (155)

272

1.5 (12)

1.8 (16)

10.1 (57)

4.2 (46)

5.9 (105)

4. (46)

7. (32)

0. (-1)

1.6 (46)

273

2.4 (177)

3.9 (1)

19.9 (92)

3.3 (197)

8.3 (645)

3.1 (415)

67.5 (622)

0. (-1)

16.3 (636)

274

1.3 (15)

2. (5)

2.8 (5)

2.4 (11)

2.4 (21)

2. (23)

36.3 (23)

0. (-1)

1.3 (19)

275

1.1 (21)

4.7 (20)

3. (12)

0.9 (16)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

0.6 (16)

276

1.4 (50)

11.4 (54)

27.1 (147)

5.4 (67)

5.6 (50)

13.1 (131)

10.3 (121)

0. (-1)

5.3 (1)

277

2.1 (24)

4. (83)

114.6 (118)

1.5 (165)

2.3 (105)

7.5 (105)

1.9 (134)

0. (-1)

2.4 (101)

278

1.3 (22)

3.7 (25)

42.8 (20)

1.8 (8)

9212.2 (24)

44.7 (8)

11.8 (6)

0. (-1)

3.9 (8)

279

6.7 (315)

6.4 (428)

183.8 (1264)

4.8 (218)

12.6 (1222)

4.3 (197)

5.9 (1165)

0. (-1)

3.1 (1165)

280

1.9 (67)

3.3 (44)

24.6 (45)

26.7 (53)

3. (38)

9.5 (20)

26.3 (37)

0. (-1)

4.9 (38)

281

2. (78)

11.4 (16)

27.3 (81)

5.4 (16)

5.6 (12)

3. (9)

3. (1)

0. (-1)

5.1 (1)

282

2.3 (23)

1.3 (54)

28.2 (31)

1.8 (40)

1.3 (61)

6.3 (45)

1.9 (6)

0. (-1)

1.8 (41)

283

1. (1)

0. (-1)

5.8 (1)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

284

1.7 (33)

3.2 (33)

2.7 (6)

1.3 (20)

6.8 (18)

2. (37)

1.7 (4)

0. (-1)

2. (10)

285

2.6 (36)

4.1 (28)

11.1 (28)

26.7 (37)

3.2 (22)

5.9 (8)

27.1 (22)

0. (-1)

7.1 (22)

286

1.3 (23)

12.7 (22)

2.9 (26)

1.7 (14)

4. (24)

2.7 (8)

2.6 (2)

0. (-1)

1. (11)

287

1.4 (8)

2.7 (107)

6. (105)

3.4 (31)

8.7 (151)

2.5 (12)

84.8 (69)

0. (-1)

0. (-1)

288

1.3 (26)

13. (21)

3.3 (26)

1.6 (13)

4. (23)

2.7 (8)

3.5 (26)

0. (-1)

1. (10)

289

1.4 (71)

3. (114)

6. (112)

1.9 (22)

8.7 (156)

2.6 (12)

27.3 (91)

0. (-1)

0. (-1)

290

2.7 (319)

515.8 (537)

140.9 (527)

18.8 (590)

105. (505)

138.5 (570)

7. (689)

0. (-1)

180.6 (554)

291

1.7 (53)

2.5 (120)

38.5 (68)

26. (79)

36.5 (102)

43.6 (33)

12.2 (33)

0. (-1)

10.1 (100)

292

2.9 (87)

4.5 (153)

7.6 (62)

7.7 (104)

147.8 (155)

18.4 (25)

3.6 (83)

0. (-1)

8.1 (155)

293

1.5 (178)

10.9 (193)

7.5 (379)

3.7 (327)

24.5 (496)

5.3 (96)

8.7 (6)

0. (-1)

8.2 (474)

294

1.4 (36)

2.1 (3)

3.4 (98)

12.9 (90)

6.6 (20)

1.9 (10)

6.9 (29)

0. (-1)

2.2 (52)

295

1.8 (11)

1.5 (24)

1.8 (28)

6. (7)

5.4 (21)

0. (-1)

1.1 (7)

0. (-1)

1.4 (11)

296

1.7 (312)

8.7 (365)

7.3 (126)

21.3 (134)

32.5 (87)

26.4 (102)

25.9 (273)

0. (-1)

13.2 (87)

297

1.9 (22)

1.9 (7)

4.6 (28)

5.8 (23)

2699.3 (18)

464.2 (15)

21.2 (7)

0. (-1)

8. (8)

298

1.9 (233)

9.9 (358)

3.9 (35)

21.9 (279)

100.7 (58)

396.8 (35)

23.5 (75)

0. (-1)

222.4 (304)

299

1.5 (16)

13.6 (173)

3.4 (15)

3.6 (1)

16.2 (36)

4.1 (8)

8.7 (6)

0. (-1)

4.8 (16)

300

2.1 (109)

1.8 (38)

8. (107)

3.5 (5)

4.3 (108)

2.3 (12)

18. (32)

0. (-1)

2.1 (84)

301

1.3 (29)

2.1 (3)

3.4 (64)

12.9 (56)

6.6 (20)

1.9 (10)

5.2 (25)

0. (-1)

1.9 (17)

302

1.8 (11)

1.5 (12)

1.8 (28)

6. (7)

5.4 (21)

0. (-1)

1.1 (7)

0. (-1)

1.4 (11)

303

1.6 (262)

8.7 (329)

6.8 (10)

11.4 (196)

40.1 (177)

27.1 (68)

25.9 (246)

0. (-1)

10.6 (219)

304

1.9 (29)

2.2 (14)

5.5 (8)

5.8 (30)

2966.3 (25)

376.7 (15)

16.8 (23)

0. (-1)

32.2 (46)

305

1.4 (21)

2.5 (11)

3.3 (13)

7.4 (13)

56.7 (12)

376.7 (16)

2.9 (37)

0. (-1)

31.5 (32)

306

1.3 (2)

3.6 (63)

5.5 (68)

3. (8)

23.5 (11)

1.5 (8)

3. (8)

0. (-1)

3.3 (8)

307

2. (73)

4.1 (73)

4.1 (145)

12.6 (198)

65.9 (210)

98.5 (64)

4.2 (103)

0. (-1)

45.7 (144)

308

1.6 (23)

10.7 (101)

7.5 (221)

23.3 (190)

177.3 (253)

7.3 (171)

13. (219)

0. (-1)

146.8 (44)

309

1.7 (2)

3.7 (47)

5.8 (37)

3.7 (8)

20. (47)

11.7 (27)

3.2 (8)

0. (-1)

4.1 (8)

310

2.4 (114)

6.4 (118)

6.2 (35)

13. (198)

66.3 (210)

11.6 (153)

5.8 (118)

0. (-1)

15.8 (104)

311

1.3 (46)

10.3 (47)

7.5 (24)

6.3 (10)

177.8 (46)

5.5 (5)

13. (45)

0. (-1)

5.3 (8)

312

1.3 (6)

1.9 (1)

2.9 (5)

2.5 (7)

16.2 (9)

0. (-1)

2.7 (7)

0. (-1)

3.1 (7)

313

1.2 (76)

2.8 (87)

3.6 (86)

2. (19)

22.6 (89)

1.5 (3)

2. (38)

0. (-1)

4.7 (76)

314

3.5 (186)

2.7 (27)

11.8 (27)

8.6 (59)

247.8 (146)

2.3 (191)

5.4 (186)

0. (-1)

11.2 (113)

315

1.7 (19)

14.4 (168)

8.7 (48)

21.9 (158)

169.2 (218)

5. (142)

6.4 (219)

0. (-1)

64.3 (95)

316

1.4 (6)

4.6 (26)

4.6 (5)

3.1 (7)

15.7 (9)

0. (-1)

2.8 (7)

0. (-1)

4.1 (7)

317

1.3 (19)

4.7 (89)

3.9 (85)

2.3 (19)

28.8 (19)

1.4 (3)

1.9 (3)

0. (-1)

5.7 (19)

318

3.3 (160)

5.7 (24)

22.3 (24)

6.3 (24)

33.8 (124)

2.1 (165)

9. (24)

0. (-1)

14.1 (124)

319

1.2 (7)

3.4 (24)

5.6 (18)

6.2 (1)

96.8 (15)

0. (-1)

8.8 (22)

0. (-1)

29.6 (8)

320

2.5 (4)

3. (4)

1.2 (2)

1.2 (8)

12.4 (7)

12.6 (1)

11.8 (8)

0. (-1)

1.2 (8)

321

1.9 (115)

4.1 (103)

2.2 (42)

3.2 (78)

44. (111)

14.9 (16)

9.6 (14)

0. (-1)

2.9 (20)

322

8.3 (136)

4.4 (94)

3.8 (102)

3.5 (68)

38.8 (102)

14.2 (103)

9.6 (103)

0. (-1)

3.4 (90)

323

5. (22)

2. (31)

8.2 (22)

12. (7)

46. (21)

40.3 (22)

10.1 (34)

0. (-1)

9.1 (34)

324

1.5 (137)

7.3 (287)

7.5 (256)

12.3 (57)

4.9 (287)

8.2 (86)

8.5 (57)

0. (-1)

4.7 (88)

325

1.2 (14)

2.1 (1)

2.1 (1)

2.5 (1)

2.5 (1)

2.7 (1)

3.8 (1)

0. (-1)

2.4 (1)

326

1.7 (36)

1724. (3)

2.7 (41)

1.4 (20)

324. (1)

1. (36)

2.3 (24)

0. (-1)

1.9 (13)

327

1.5 (12)

3.4 (254)

10.2 (56)

3.1 (12)

6. (170)

3.6 (46)

2.4 (154)

0. (-1)

2. (46)

328

2.4 (229)

3.5 (242)

23. (87)

3.4 (231)

4.9 (480)

3.5 (95)

2.6 (127)

0. (-1)

1.5 (95)

329

1.2 (14)

4.8 (46)

4. (52)

1.6 (12)

5.3 (11)

2. (12)

2.9 (9)

0. (-1)

1.7 (14)

330

1.4 (144)

5.5 (143)

7.2 (149)

9.2 (11)

5.9 (188)

1.2 (159)

6.3 (11)

0. (-1)

3.2 (11)

331

1.1 (13)

2.8 (8)

2.1 (1)

2.2 (1)

2.3 (1)

0. (-1)

3.4 (1)

0. (-1)

0.9 (4)

332

1.8 (32)

3.2 (39)

2.3 (18)

1.2 (135)

2. (7)

0. (-1)

2. (19)

0. (-1)

1.1 (135)

333

1.5 (13)

5.5 (145)

9.9 (44)

2.7 (13)

5.2 (147)

0. (-1)

2.2 (131)

0. (-1)

1.4 (121)

334

1.8 (307)

11.8 (165)

17.2 (90)

2.6 (22)

7.4 (406)

0. (-1)

1.7 (135)

0. (-1)

1.4 (378)

335

1.4 (60)

3.7 (53)

3.8 (58)

1.2 (14)

9.7 (20)

0. (-1)

2.8 (18)

0. (-1)

1.3 (14)

336

2.1 (81)

8.2 (323)

22.1 (318)

4.3 (72)

6.3 (315)

5.1 (98)

7.6 (133)

0. (-1)

8.6 (28)

337

2.5 (201)

3. (219)

43.8 (156)

5.3 (201)

13.7 (215)

30.9 (63)

7.5 (1)

0. (-1)

2. (104)

338

1.6 (21)

7.9 (18)

53. (20)

2.3 (41)

31.4 (36)

62.9 (8)

10.6 (1)

0. (-1)

9. (8)

339

3.3 (439)

5.6 (156)

71.1 (235)

16.1 (244)

7.1 (512)

4.5 (307)

6.7 (15)

0. (-1)

2.7 (126)

340

1.9 (78)

17.8 (42)

32. (46)

5.2 (15)

5. (37)

118.9 (37)

15.4 (37)

0. (-1)

12.9 (37)

341

2.1 (170)

8.2 (121)

1614.5 (38)

3.3 (68)

6.3 (113)

4.3 (75)

5.1 (172)

0. (-1)

8.8 (172)

342

2.3 (23)

1.8 (43)

36.8 (31)

3.9 (49)

3.4 (49)

5.3 (48)

6.1 (6)

0. (-1)

1.4 (48)

343

1. (1)

5.3 (1)

5.3 (1)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

344

1.6 (5)

2.4 (7)

5.8 (7)

2.8 (20)

7.1 (18)

1.8 (26)

6. (1)

0. (-1)

1.7 (26)

345

2.8 (41)

10.8 (36)

23.5 (34)

3.8 (20)

5. (27)

118.9 (27)

15.3 (27)

0. (-1)

12.9 (27)

346

1.4 (5)

3.6 (29)

5.2 (5)

0.8 (4)

9.3 (6)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

347

1.4 (7)

18.4 (85)

7.9 (123)

1.4 (47)

8.9 (167)

1.5 (35)

0. (-1)

0. (-1)

0. (-1)

348

1.4 (4)

8.2 (13)

2.8 (6)

1.3 (28)

7.3 (28)

0.9 (22)

0. (-1)

0. (-1)

0.8 (22)

349

2.4 (72)

3.2 (115)

5.8 (113)

2.1 (10)

9.7 (157)

1.2 (9)

0. (-1)

0. (-1)

0. (-1)

350

1.8 (283)

1.6 (138)

2.1 (190)

1.1 (31)

2. (140)

2.7 (221)

2. (150)

0. (-1)

3. (121)

351

2. (181)

2.5 (57)

1.5 (92)

3.3 (136)

2.5 (60)

2. (179)

0. (-1)

0. (-1)

0. (-1)

352

1.7 (54)

1.1 (5)

2.2 (55)

2.2 (65)

1.5 (69)

114.2 (16)

2.7 (55)

0. (-1)

1.2 (44)

353

1.8 (52)

1.8 (35)

3.3 (134)

5. (88)

5.7 (117)

7.8 (69)

557.1 (66)

0. (-1)

1.2 (103)

354

1.7 (45)

1.8 (35)

1.2 (7)

0. (-1)

0. (-1)

9.1 (69)

0. (-1)

0. (-1)

1.2 (35)

355

4.2 (130)

4.3 (159)

92.4 (68)

26. (60)

1534.9 (86)

160. (81)

92.9 (68)

0. (-1)

43.7 (60)

356

1.1 (1)

1. (2)

1.2 (14)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

357

1.4 (161)

1.3 (153)

2.4 (41)

4.1 (155)

2.7 (28)

4.9 (30)

0. (-1)

0. (-1)

2.3 (155)

358

1.3 (105)

1.1 (366)

2.2 (291)

1.4 (4)

2.1 (364)

1.9 (358)

0. (-1)

0. (-1)

1.3 (4)

359

66.8 (46)

527.7 (105)

439.4 (227)

439.4 (227)

21.8 (64)

522.8 (105)

573.4 (258)

0. (-1)

439.4 (227)

360

3.2 (77)

10. (17)

1.5 (2)

6.5 (16)

10. (23)

23.3 (162)

12.5 (18)

0. (-1)

8. (23)

361

224.7 (703)

5605.6 (2439)

6816.7 (2524)

152.4 (703)

145.9 (2571)

164.5 (2571)

4761.5 (2727)

0. (-1)

392.3 (1086)

362

265. (1928)

5645.2 (2956)

1580.6 (1154)

430.8 (948)

78.3 (2418)

52.7 (2449)

39084.8 (2246)

0. (-1)

153.5 (2418)

363

130.3 (400)

21182. (1738)

767.1 (1263)

1205. (99)

126.2 (731)

363.2 (2409)

2340.2 (284)

0. (-1)

242. (731)

364

430.4 (1124)

365.7 (72)

892063.8 (1190)

205.3 (735)

25.6 (735)

37. (735)

395.1 (755)

0. (-1)

60.7 (735)

365

2.9 (6)

1. (1)

7.5 (9)

1.4 (1)

1.2 (8)

0.7 (2)

0. (-1)

0. (-1)

0. (-1)

366

88.4 (910)

650.2 (1384)

182975.9 (2420)

6.9 (1028)

14782.7 (2646)

20.4 (315)

31. (1760)

0. (-1)

44.9 (2310)

367

10.1 (38)

14.4 (41)

1.6 (50)

7.3 (7)

4953.2 (18)

11.2 (93)

16.1 (3)

0. (-1)

16. (80)

1.11 Pass/Fail per test file for each CAS system

The following table gives the number of passed integrals and number of failed integrals per test number. There are 210 tests. Each tests corresponds to one input file.

#
Rubi
MMA
Maple
Maxima
FriCAS
Sympy
Giac
Mupad
Reduce
Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail
1 175 0 175 0 173 2 166 9 174 1 165 10 171 4 169 6 160 15
2 33 2 34 1 28 7 16 19 25 10 9 26 17 18 9 26 11 24
3 13 1 14 0 12 2 8 6 13 1 9 5 10 4 11 3 8 6
4 76 0 76 0 76 0 76 0 76 0 76 0 76 0 76 0 76 0
5 48 2 50 0 33 17 26 24 50 0 19 31 41 9 12 38 23 27
6 279 5 284 0 283 1 251 33 281 3 255 29 270 14 270 14 267 17
7 3 4 7 0 5 2 3 4 7 0 5 2 5 2 7 0 4 3
8 7 2 9 0 9 0 7 2 9 0 5 4 9 0 9 0 6 3
9 113 0 113 0 113 0 111 2 112 1 107 6 111 2 106 7 109 4
10 376 0 376 0 376 0 374 2 376 0 363 13 376 0 372 4 357 19
11 705 0 705 0 656 49 565 140 662 43 460 245 594 111 542 163 465 240
12 110 6 102 14 88 28 20 96 90 26 29 87 36 80 37 79 27 89
13 8 0 8 0 8 0 7 1 8 0 8 0 8 0 8 0 8 0
14 111 0 111 0 111 0 111 0 111 0 111 0 111 0 111 0 111 0
15 832 0 832 0 691 141 687 145 691 141 811 21 632 200 596 236 664 168
16 299 0 299 0 207 92 141 158 218 81 134 165 141 158 123 176 158 141
17 802 0 802 0 507 295 347 455 559 243 306 496 444 358 465 337 488 314
18 352 0 352 0 347 5 347 5 347 5 338 14 339 13 319 33 348 4
19 354 0 354 0 294 60 193 161 294 60 173 181 215 139 172 182 220 134
20 626 0 626 0 471 155 146 480 500 126 156 470 410 216 214 412 405 221
21 264 0 264 0 243 21 155 109 242 22 130 134 239 25 213 51 238 26
22 1836 1 1835 2 1616 221 1174 663 1654 183 847 990 1237 600 937 900 1244 593
23 233 6 236 3 224 15 40 199 177 62 74 165 216 23 192 47 205 34
24 157 1 153 5 121 37 15 143 44 114 8 150 32 126 18 140 26 132
25 30 0 30 0 30 0 30 0 30 0 30 0 30 0 23 7 30 0
26 192 0 192 0 177 15 94 98 166 26 86 106 177 15 26 166 140 52
27 100 0 100 0 100 0 49 51 84 16 11 89 71 29 64 36 68 32
28 43 0 43 0 43 0 1 42 9 34 0 43 1 42 1 42 1 42
29 136 0 134 2 68 68 60 76 65 71 136 0 61 75 136 0 65 71
30 1304 0 1304 0 805 499 633 671 749 555 1264 40 612 692 734 570 655 649
31 564 0 564 0 339 225 105 459 347 217 173 391 124 440 86 478 139 425
32 1662 1 1661 2 1301 362 830 833 1227 436 882 781 971 692 889 774 956 707
33 378 193 424 147 381 190 44 527 229 342 53 518 168 403 60 511 138 433
34 186 210 304 92 264 132 14 382 115 281 29 367 14 382 14 382 17 379
35 151 0 151 0 107 44 107 44 107 44 151 0 107 44 91 60 107 44
36 270 0 270 0 251 19 244 26 251 19 242 28 247 23 123 147 250 20
37 57 0 57 0 52 5 7 50 52 5 5 52 8 49 5 52 9 48
38 30 18 31 17 31 17 0 48 0 48 0 48 6 42 0 48 7 41
39 15 3 15 3 15 3 0 18 0 18 0 18 0 18 0 18 0 18
40 41 0 41 0 32 9 19 22 32 9 41 0 12 29 41 0 12 29
41 52 0 52 0 42 10 20 32 42 10 52 0 8 44 52 0 8 44
42 197 0 197 0 140 57 121 76 119 78 190 7 122 75 197 0 122 75
43 456 0 456 0 418 38 290 166 401 55 442 14 275 181 340 116 267 189
44 727 0 727 0 592 135 432 295 571 156 709 18 388 339 441 286 352 375
45 658 0 658 0 368 290 321 337 437 221 650 8 338 320 321 337 324 334
46 573 0 573 0 565 8 504 69 544 29 567 6 485 88 483 90 504 69
47 701 0 701 0 552 149 543 158 589 112 690 11 441 260 499 202 546 155
48 132 0 132 0 129 3 79 53 123 9 111 21 114 18 117 15 123 9
49 69 0 69 0 47 22 43 26 48 21 11 58 52 17 20 49 52 17
50 189 1 190 0 111 79 70 120 88 102 72 118 32 158 52 138 32 158
51 134 0 134 0 87 47 40 94 54 80 54 80 28 106 34 100 28 106
52 147 0 146 1 74 73 42 105 73 74 68 79 39 108 66 81 63 84
53 6 0 5 1 0 6 0 6 3 3 0 6 0 6 0 6 0 6
54 894 2 894 2 760 136 333 563 666 230 419 477 439 457 447 449 243 653
55 299 0 299 0 215 84 114 185 189 110 187 112 103 196 116 183 82 217
56 608 2 607 3 262 348 195 415 299 311 309 301 190 420 196 414 225 385
57 43 0 43 0 43 0 43 0 43 0 18 25 42 1 37 6 43 0
58 16 1 16 1 12 5 6 11 7 10 0 17 5 12 6 11 7 10
59 86 5 87 4 32 59 32 59 28 63 24 67 32 59 32 59 35 56
60 43 0 43 0 43 0 43 0 43 0 18 25 42 1 37 6 43 0
61 115 0 115 0 98 17 44 71 98 17 111 4 51 64 67 48 51 64
62 122 0 122 0 116 6 104 18 116 6 107 15 104 18 104 18 104 18
63 70 0 70 0 57 13 54 16 56 14 56 14 56 14 60 10 54 16
64 273 0 273 0 270 3 226 47 270 3 199 74 226 47 228 45 226 47
65 113 0 113 0 92 21 18 95 69 44 104 9 18 95 21 92 18 95
66 38 0 38 0 31 7 31 7 33 5 31 7 25 13 26 12 31 7
67 4 1 5 0 4 1 2 3 2 3 0 5 2 3 2 3 2 3
68 6 0 6 0 5 1 1 5 5 1 1 5 1 5 1 5 1 5
69 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0
70 391 0 391 0 282 109 222 169 299 92 123 268 252 139 212 179 248 143
71 477 0 472 5 368 109 231 246 352 125 210 267 264 213 271 206 268 209
72 1299 0 1299 0 1104 195 487 812 1097 202 406 893 928 371 359 940 993 306
73 1904 44 1856 92 1635 313 766 1182 1460 488 812 1136 1181 767 933 1015 1206 742
74 252 0 252 0 219 33 162 90 219 33 54 198 206 46 57 195 211 41
75 371 0 283 88 54 317 54 317 54 317 177 194 53 318 55 316 54 317
76 28 1 27 2 22 7 18 11 19 10 18 11 18 11 20 9 19 10
77 325 61 322 64 230 156 113 273 245 141 79 307 180 206 107 279 209 177
78 104 0 103 1 102 2 31 73 100 4 12 92 61 43 35 69 69 35
79 144 0 144 0 95 49 68 76 79 65 51 93 79 65 143 1 75 69
80 462 0 462 0 300 162 136 326 288 174 40 422 250 212 178 284 270 192
81 261 0 261 0 238 23 135 126 238 23 116 145 177 84 146 115 172 89
82 376 0 376 0 357 19 229 147 357 19 126 250 347 29 202 174 357 19
83 272 3 275 0 243 32 111 164 257 18 28 247 159 116 60 215 222 53
84 9 1 10 0 10 0 4 6 10 0 0 10 10 0 0 10 10 0
85 22 0 22 0 22 0 0 22 22 0 0 22 4 18 0 22 13 9
86 438 0 438 0 368 70 164 274 320 118 129 309 250 188 199 239 274 164
87 298 0 296 2 275 23 212 86 277 21 141 157 227 71 197 101 228 70
88 170 0 170 0 131 39 119 51 131 39 122 48 129 41 128 42 131 39
89 343 1 344 0 329 15 252 92 329 15 211 133 295 49 258 86 297 47
90 454 0 454 0 438 16 312 142 438 16 248 206 394 60 327 127 434 20
91 404 0 404 0 338 66 204 200 338 66 204 200 296 108 275 129 332 72
92 797 1 793 5 654 144 272 526 646 152 308 490 508 290 442 356 504 294
93 143 0 121 22 107 36 54 89 107 36 31 112 79 64 66 77 89 54
94 309 1 301 9 286 24 227 83 276 34 142 168 239 71 214 96 236 74
95 176 6 170 12 156 26 58 124 128 54 50 132 95 87 85 97 87 95
96 151 0 151 0 145 6 1 150 145 6 12 139 73 78 29 122 126 25
97 316 0 316 0 287 29 72 244 273 43 22 294 246 70 130 186 274 42
98 240 6 246 0 230 16 70 176 230 16 102 144 171 75 125 121 155 91
99 505 2 503 4 489 18 355 152 456 51 239 268 397 110 283 224 389 118
100 167 5 172 0 169 3 87 85 167 5 78 94 131 41 101 71 127 45
101 1130 2 1126 6 1087 45 613 519 1048 84 496 636 938 194 653 479 921 211
102 754 40 787 7 749 45 534 260 681 113 382 412 634 160 462 332 618 176
103 844 33 869 8 812 65 232 645 613 264 195 682 634 243 428 449 580 297
104 11 2 11 2 7 6 1 12 6 7 5 8 5 8 4 9 5 8
105 169 11 173 7 163 17 106 74 154 26 102 78 135 45 92 88 121 59
106 205 7 212 0 205 7 33 179 136 76 37 175 102 110 39 173 95 117
107 37 0 37 0 37 0 19 18 37 0 28 9 37 0 32 5 32 5
108 168 0 165 3 165 3 135 33 126 42 71 97 122 46 53 115 96 72
109 206 1 204 3 181 26 128 79 181 26 82 125 175 32 75 132 177 30
110 237 23 260 0 259 1 128 132 167 93 86 174 98 162 3 257 124 136
111 33 17 50 0 50 0 5 45 21 29 2 48 8 42 0 50 20 30
112 51 24 75 0 75 0 8 67 20 55 8 67 19 56 11 64 28 47
113 29 3 29 3 25 7 17 15 25 7 10 22 23 9 4 28 19 13
114 344 0 344 0 343 1 7 337 344 0 29 315 14 330 35 309 14 330
115 1104 5 1107 2 1041 68 736 373 1037 72 511 598 900 209 759 350 881 228
116 401 92 445 48 436 57 42 451 402 91 232 261 110 383 80 413 127 366
117 30 0 30 0 30 0 0 30 30 0 0 30 6 24 6 24 25 5
118 881 200 868 213 810 271 178 903 610 471 230 851 417 664 317 764 364 717
119 108 0 108 0 104 4 63 45 92 16 41 67 81 27 82 26 81 27
120 190 0 190 0 187 3 60 130 158 32 76 114 131 59 131 59 113 77
121 183 79 189 73 180 82 0 262 94 168 31 231 15 247 0 262 30 232
122 46 88 47 87 47 87 0 134 16 118 0 134 10 124 1 133 2 132
123 117 0 117 0 99 18 64 53 75 42 50 67 86 31 61 56 87 30
124 255 0 255 0 160 95 135 120 201 54 49 206 156 99 99 156 132 123
125 143 0 143 0 135 8 73 70 135 8 127 16 126 17 135 8 81 62
126 294 0 292 2 182 112 83 211 181 113 76 218 135 159 101 193 151 143
127 56 0 38 18 13 43 5 51 8 48 16 40 7 49 7 49 7 49
128 92 1 87 6 63 30 18 75 59 34 48 45 39 54 51 42 39 54
129 109 4 110 3 89 24 52 61 79 34 51 62 73 40 77 36 49 64
130 108 11 100 19 73 46 2 117 42 77 25 94 52 67 52 67 13 106
131 219 5 199 25 95 129 70 154 87 137 51 173 82 142 89 135 87 137
132 24 12 36 0 3 33 2 34 3 33 2 34 2 34 2 34 3 33
133 5 0 5 0 1 4 1 4 5 0 1 4 3 2 3 2 3 2
134 10 3 12 1 0 13 0 13 0 13 3 10 0 13 0 13 3 10
135 45 5 50 0 43 7 12 38 43 7 19 31 32 18 16 34 34 16
136 62 0 62 0 59 3 0 62 62 0 0 62 58 4 0 62 22 40
137 53 0 53 0 11 42 3 50 39 14 7 46 9 44 6 47 33 20
138 90 0 90 0 88 2 24 66 88 2 33 57 71 19 48 42 83 7
139 7 1 8 0 8 0 3 5 6 2 3 5 3 5 8 0 3 5
140 84 3 83 4 79 8 24 63 77 10 42 45 68 19 52 35 65 22
141 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0
142 161 12 171 2 147 26 81 92 148 25 84 89 99 74 121 52 99 74
143 168 10 160 18 149 29 85 93 155 23 85 93 97 81 123 55 105 73
144 93 1 94 0 94 0 39 55 69 25 56 38 54 40 62 32 42 52
145 67 0 67 0 67 0 33 34 52 15 48 19 33 34 52 15 38 29
146 54 0 54 0 54 0 50 4 54 0 54 0 50 4 54 0 50 4
147 298 22 298 22 259 61 125 195 190 130 186 134 153 167 192 128 145 175
148 238 2 237 3 173 67 53 187 178 62 45 195 62 178 116 124 60 180
149 536 0 536 0 499 37 412 124 466 70 366 170 289 247 313 223 477 59
150 195 0 176 19 141 54 56 139 127 68 44 151 72 123 43 152 113 82
151 48 50 90 8 41 57 0 98 89 9 82 16 2 96 2 96 20 78
152 19 8 17 10 0 27 0 27 1 26 0 27 12 15 0 27 2 25
153 52 0 52 0 52 0 15 37 52 0 11 41 52 0 52 0 52 0
154 384 14 398 0 378 20 209 189 375 23 185 213 304 94 267 131 308 90
155 701 9 692 18 586 124 469 241 629 81 338 372 344 366 551 159 368 342
156 137 0 137 0 115 22 86 51 132 5 60 77 72 65 79 58 75 62
157 120 4 112 12 95 29 90 34 113 11 62 62 80 44 67 57 65 59
158 93 0 85 8 81 12 78 15 93 0 50 43 54 39 53 40 54 39
159 385 14 383 16 204 195 146 253 299 100 98 301 147 252 148 251 112 287
160 12 8 20 0 6 14 9 11 14 6 7 13 5 15 6 14 6 14
161 15 0 15 0 11 4 11 4 11 4 6 9 11 4 4 11 10 5
162 15 0 15 0 11 4 6 9 11 4 3 12 11 4 11 4 10 5
163 1402 14 1387 29 1110 306 631 785 1127 289 460 956 780 636 706 710 1067 349
164 909 10 897 22 756 163 473 446 812 107 194 725 529 390 482 437 721 198
165 76 4 80 0 64 16 14 66 63 17 3 77 6 74 58 22 58 22
166 46 0 46 0 39 7 32 14 38 8 36 10 32 14 36 10 34 12
167 1401 0 1372 29 1097 304 624 777 1114 287 459 942 773 628 699 702 1066 335
168 314 0 314 0 267 47 220 94 279 35 133 181 190 124 183 131 186 128
169 193 0 193 0 121 72 106 87 123 70 79 114 102 91 60 133 79 114
170 454 0 445 9 331 123 224 230 280 174 272 182 191 263 146 308 259 195
171 255 0 249 6 143 112 70 185 93 162 49 206 61 194 49 206 51 204
172 314 0 301 13 225 89 238 76 210 104 125 189 191 123 200 114 197 117
173 261 0 247 14 159 102 178 83 154 107 54 207 118 143 125 136 131 130
174 106 2 107 1 42 66 68 40 41 67 20 88 36 72 35 73 43 65
175 553 13 562 4 360 206 226 340 221 345 170 396 217 349 209 357 195 371
176 640 88 686 42 426 302 373 355 441 287 217 511 391 337 328 400 389 339
177 24 20 44 0 40 4 36 8 36 8 16 28 16 28 16 28 16 28
178 537 1 538 0 446 92 243 295 439 99 99 439 213 325 248 290 162 376
179 98 0 98 0 73 25 44 54 73 25 44 54 65 33 50 48 44 54
180 645 1 633 13 569 77 288 358 533 113 106 540 314 332 258 388 215 431
181 206 2 201 7 178 30 142 66 178 30 5 203 164 44 154 54 154 54
182 835 3 796 42 633 205 219 619 581 257 166 672 433 405 345 493 267 571
183 1545 14 1508 51 1343 216 979 580 1291 268 243 1316 1189 370 1126 433 1033 526
184 51 0 45 6 50 1 16 35 31 20 4 47 20 31 13 38 12 39
185 356 2 334 24 296 62 133 225 275 83 102 256 201 157 178 180 129 229
186 19 0 15 4 13 6 13 6 13 6 8 11 13 6 13 6 12 7
187 32 0 18 14 5 27 7 25 9 23 1 31 1 31 9 23 2 30
188 145 0 145 0 134 11 77 68 121 24 71 74 94 51 94 51 77 68
189 523 2 516 9 467 58 300 225 428 97 62 463 293 232 298 227 188 337
190 9 0 9 0 9 0 2 7 9 0 5 4 9 0 9 0 9 0
191 19 0 19 0 19 0 5 14 17 2 6 13 9 10 19 0 6 13
192 331 17 346 2 264 84 203 145 322 26 117 231 181 167 143 205 138 210
193 113 0 113 0 113 0 53 60 113 0 26 87 71 42 20 93 20 93
194 357 0 349 8 245 112 270 87 305 52 115 242 183 174 129 228 138 219
195 36 0 36 0 34 2 34 2 36 0 20 16 34 2 16 20 10 26
196 12 24 36 0 33 3 31 5 36 0 22 14 31 5 35 1 25 11
197 294 0 294 0 197 97 92 202 197 97 18 276 66 228 80 214 83 211
198 62 0 62 0 45 17 39 23 45 17 32 30 39 23 35 27 32 30
199 89 0 89 0 88 1 27 62 57 32 23 66 32 57 34 55 32 57
200 22 0 22 0 22 0 17 5 21 1 1 21 21 1 18 4 18 4
201 189 0 189 0 135 54 140 49 137 52 55 134 112 77 74 115 51 138
202 99 0 99 0 87 12 69 30 91 8 34 65 52 47 30 69 29 70
203 34 0 34 0 32 2 32 2 34 0 18 16 32 2 15 19 10 24
204 932 0 929 3 853 79 325 607 675 257 105 827 296 636 310 622 238 694
205 4 0 4 0 4 0 0 4 0 4 0 4 0 4 0 4 0 4
206 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0
207 644 0 635 9 628 16 209 435 470 174 68 576 190 454 231 413 164 480
208 392 1 389 4 238 155 119 274 238 155 15 378 71 322 75 318 117 276
209 1541 0 1535 6 1495 46 496 1045 1160 381 123 1418 497 1044 629 912 438 1103
210 72 0 72 0 72 0 33 39 61 11 23 49 45 27 45 27 26 46
211 54 0 54 0 52 2 53 1 53 1 11 43 53 1 40 14 39 15
212 21 0 21 0 21 0 2 19 18 3 6 15 19 2 19 2 19 2
213 20 0 20 0 20 0 4 16 18 2 5 15 20 0 20 0 10 10
214 387 0 387 0 267 120 137 250 241 146 18 369 92 295 122 265 29 358
215 709 0 709 0 590 119 412 297 581 128 127 582 265 444 377 332 191 518
216 91 0 90 1 83 8 79 12 83 8 8 83 82 9 83 8 73 18
217 1332 12 1271 73 1124 220 589 755 1177 167 295 1049 506 838 853 491 226 1118
218 855 0 819 36 777 78 428 427 783 72 209 646 311 544 529 326 149 706
219 167 4 169 2 122 49 84 87 105 66 63 108 84 87 104 67 77 94
220 500 1 499 2 412 89 269 232 416 85 96 405 301 200 283 218 233 268
221 45 4 49 0 30 19 0 49 40 9 0 49 0 49 0 49 0 49
222 62 1 63 0 58 5 49 14 63 0 28 35 35 28 32 31 21 42
223 66 0 66 0 36 30 61 5 48 18 36 30 36 30 38 28 36 30
224 52 0 52 0 37 15 37 15 37 15 8 44 17 35 26 26 16 36
225 24 0 23 1 23 1 19 5 23 1 6 18 23 1 23 1 11 13
226 21 0 21 0 21 0 17 4 21 0 4 17 21 0 21 0 11 10
227 106 0 104 2 103 3 3 103 103 3 2 104 3 103 103 3 3 103
228 64 0 64 0 63 1 23 41 64 0 11 53 61 3 39 25 7 57
229 28 3 31 0 19 12 0 31 31 0 0 31 0 31 0 31 0 31
230 61 0 61 0 58 3 49 12 61 0 28 33 35 26 28 33 19 42
231 299 0 299 0 227 72 93 206 218 81 29 270 88 211 78 221 83 216
232 878 1 871 8 733 146 323 556 609 270 47 832 342 537 323 556 251 628
233 301 5 306 0 267 39 175 131 243 63 7 299 191 115 193 113 191 115
234 356 6 342 20 328 34 186 176 257 105 38 324 251 111 178 184 169 193
235 240 2 235 7 219 23 98 144 146 96 5 237 122 120 56 186 60 182
236 286 0 282 4 264 22 166 120 238 48 1 285 225 61 191 95 140 146
237 628 6 633 1 578 56 214 420 458 176 8 626 295 339 195 439 151 483
238 70 0 70 0 70 0 48 22 70 0 3 67 46 24 49 21 45 25
239 1361 12 1341 32 1251 122 511 862 1036 337 11 1362 717 656 552 821 397 976
240 468 2 438 32 430 40 290 180 416 54 22 448 287 183 243 227 219 251
241 46 0 46 0 42 4 36 10 46 0 20 26 24 22 24 22 24 22
242 83 0 79 4 51 32 48 35 63 20 37 46 43 40 47 36 46 37
243 70 0 70 0 53 17 28 42 53 17 9 61 28 42 16 54 31 39
244 59 0 53 6 41 18 25 34 41 18 3 56 40 19 33 26 33 26
245 16 0 16 0 16 0 12 4 16 0 0 16 16 0 16 0 16 0
246 23 0 23 0 23 0 18 5 23 0 0 23 23 0 23 0 23 0
247 24 0 24 0 24 0 24 0 24 0 4 20 24 0 24 0 24 0
248 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1
249 27 0 27 0 27 0 18 9 27 0 0 27 19 8 8 19 8 19
250 84 0 80 4 52 32 51 33 64 20 37 47 44 40 47 37 48 36
251 114 4 114 4 68 50 84 34 92 26 54 64 88 30 56 62 29 89
252 138 32 150 20 91 79 99 71 103 67 59 111 100 70 73 97 22 148
253 17 20 33 4 23 14 20 17 28 9 23 14 28 9 17 20 18 19
254 877 16 886 7 852 41 617 276 854 39 391 502 676 217 643 250 519 374
255 291 3 294 0 290 4 271 23 290 4 66 228 287 7 290 4 255 39
256 456 163 611 8 528 91 429 190 528 91 212 407 451 168 397 222 189 430
257 395 2 397 0 359 38 341 56 365 32 123 274 244 153 155 242 141 256
258 9 0 9 0 9 0 1 8 9 0 1 8 1 8 1 8 1 8
259 330 0 305 25 150 180 141 189 183 147 67 263 90 240 149 181 109 221
260 144 2 146 0 114 32 114 32 115 31 43 103 63 83 50 96 42 104
261 44 10 54 0 54 0 22 32 53 1 1 53 48 6 54 0 0 54
262 346 3 345 4 276 73 90 259 164 185 130 219 213 136 73 276 85 264
263 15 0 15 0 14 1 4 11 4 11 4 11 11 4 4 11 4 11
264 187 4 191 0 182 9 57 134 68 123 83 108 131 60 64 127 75 116
265 199 0 199 0 177 22 70 129 59 140 81 118 131 68 65 134 87 112
266 498 3 500 1 470 31 191 310 207 294 147 354 161 340 90 411 140 361
267 180 3 181 2 163 20 35 148 44 139 31 152 40 143 15 168 29 154
268 30 0 30 0 7 23 7 23 18 12 18 12 15 15 7 23 11 19
269 95 0 91 4 64 31 28 67 49 46 33 62 55 40 20 75 24 71
270 15 0 15 0 14 1 4 11 4 11 4 11 11 4 4 11 4 11
271 227 0 224 3 216 11 75 152 85 142 100 127 161 66 73 154 89 138
272 117 0 116 1 113 4 55 62 55 62 55 62 71 46 33 84 47 70
273 703 2 689 16 650 55 247 458 264 441 207 498 256 449 146 559 206 499
274 23 0 23 0 23 0 7 16 7 16 6 17 7 16 1 22 6 17
275 23 0 23 0 20 3 3 20 2 21 1 22 2 21 2 21 3 20
276 153 0 151 2 134 19 86 67 143 10 51 102 62 91 55 98 72 81
277 166 0 163 3 151 15 93 73 92 74 93 73 98 68 108 58 103 63
278 31 0 27 4 30 1 14 17 12 19 11 20 13 18 14 17 14 17
279 1283 16 1278 21 1198 101 406 893 564 735 563 736 626 673 753 546 757 542
280 70 1 68 3 70 1 36 35 28 43 24 47 28 43 30 41 29 42
281 86 0 84 2 86 0 46 40 83 3 10 76 29 57 29 57 29 57
282 61 0 61 0 60 1 42 19 39 22 38 23 38 23 38 23 38 23
283 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1
284 37 0 37 0 33 4 24 13 24 13 15 22 20 17 17 20 20 17
285 52 1 49 4 52 1 30 23 22 31 19 34 26 27 24 29 23 30
286 50 0 49 1 37 13 18 32 28 22 13 37 27 23 10 40 2 48
287 174 0 174 0 140 34 62 112 124 50 67 107 96 78 53 121 44 130
288 49 0 49 0 36 13 15 34 27 22 12 37 25 24 12 37 2 47
289 178 0 178 0 147 31 63 115 123 55 65 113 94 84 57 121 46 132
290 711 10 717 4 651 70 534 187 683 38 254 467 525 196 459 262 454 267
291 123 0 123 0 102 21 104 19 123 0 26 97 97 26 104 19 93 30
292 123 48 171 0 165 6 120 51 165 6 41 130 165 6 129 42 154 17
293 448 54 496 6 341 161 289 213 465 37 118 384 205 297 209 293 183 319
294 102 0 102 0 80 22 84 18 78 24 32 70 54 48 29 73 44 58
295 33 0 33 0 31 2 31 2 33 0 9 24 31 2 9 24 10 23
296 369 0 369 0 334 35 266 103 353 16 121 248 280 89 221 148 147 222
297 43 0 43 0 43 0 16 27 35 8 13 30 27 16 22 21 11 32
298 489 0 466 23 451 38 183 306 418 71 67 422 224 265 231 258 213 276
299 183 0 182 1 111 72 143 40 150 33 61 122 103 80 70 113 61 122
300 111 0 111 0 111 0 64 47 111 0 26 85 71 40 20 91 41 70
301 68 0 68 0 58 10 62 6 60 8 24 44 43 25 21 47 36 32
302 33 0 33 0 31 2 31 2 33 0 9 24 31 2 9 24 11 22
303 337 0 337 0 307 30 208 129 326 11 104 233 254 83 190 147 202 135
304 50 0 50 0 50 0 18 32 41 9 16 34 32 18 27 23 15 35
305 42 0 42 0 40 2 19 23 41 1 7 35 21 21 34 8 33 9
306 77 0 72 5 69 8 63 14 64 13 30 47 44 33 39 38 39 38
307 258 0 257 1 215 43 161 97 219 39 71 187 189 69 185 73 167 91
308 263 0 263 0 249 14 177 86 263 0 39 224 227 36 185 78 193 70
309 61 0 61 0 58 3 55 6 61 0 28 33 35 26 28 33 28 33
310 229 0 228 1 169 60 108 121 183 46 35 194 129 100 135 94 117 112
311 53 0 53 0 43 10 16 37 53 0 7 46 36 17 32 21 10 43
312 16 0 16 0 8 8 5 11 12 4 3 13 4 12 4 12 4 12
313 91 0 87 4 57 34 46 45 71 20 43 48 51 40 54 37 54 37
314 200 1 192 9 140 61 90 111 183 18 14 187 111 90 94 107 107 94
315 220 0 220 0 180 40 147 73 220 0 10 210 144 76 121 99 169 51
316 27 2 29 0 19 10 13 16 25 4 4 25 8 21 8 21 8 21
317 90 0 85 5 56 34 62 28 70 20 43 47 50 40 54 36 53 37
318 174 1 175 0 136 39 109 66 169 6 3 172 107 68 91 84 78 97
319 27 0 27 0 14 13 10 17 27 0 0 27 20 7 5 22 8 19
320 12 0 12 0 4 8 4 8 4 8 4 8 4 8 4 8 2 10
321 117 2 117 2 84 35 84 35 92 27 32 87 88 31 70 49 66 53
322 146 32 156 22 111 67 109 69 111 67 35 143 106 72 95 83 98 80
323 26 11 32 5 26 11 20 17 28 9 17 20 28 9 21 16 25 12
324 288 2 290 0 185 105 69 221 118 172 72 218 65 225 54 236 70 220
325 15 0 15 0 7 8 4 11 4 11 4 11 4 11 1 14 4 11
326 187 4 191 0 141 50 78 113 67 124 74 117 59 132 59 132 73 118
327 271 1 272 0 221 51 95 177 64 208 78 194 65 207 64 208 86 186
328 481 3 481 3 431 53 206 278 205 279 151 333 58 426 96 388 127 357
329 57 0 56 1 50 7 21 36 20 37 16 41 13 44 11 46 17 40
330 190 0 186 4 116 74 42 148 74 116 22 168 43 147 33 157 41 149
331 15 0 15 0 7 8 4 11 4 11 0 15 4 11 1 14 1 14
332 166 0 160 6 120 46 57 109 52 114 25 141 39 127 32 134 46 120
333 177 0 176 1 148 29 69 108 56 121 37 140 59 118 56 121 62 115
334 414 3 415 2 352 65 170 247 177 240 51 366 51 366 79 338 120 297
335 69 1 68 2 61 9 16 54 28 42 9 61 16 54 12 58 16 54
336 361 0 359 2 342 19 268 93 350 11 98 263 261 100 239 122 74 287
337 242 0 231 11 205 37 154 88 147 95 82 160 127 115 128 114 145 97
338 50 0 49 1 49 1 30 20 17 33 10 40 17 33 17 33 16 34
339 537 0 534 3 508 29 269 268 261 276 144 393 177 360 177 360 177 360
340 78 1 76 3 78 1 35 44 17 62 15 64 17 62 17 62 17 62
341 179 0 175 4 157 22 149 30 159 20 60 119 90 89 98 81 54 125
342 49 0 49 0 48 1 41 8 28 21 23 26 27 22 26 23 27 22
343 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
344 27 0 27 0 23 4 25 2 21 6 11 16 20 7 14 13 14 13
345 49 1 49 1 49 1 33 17 17 33 15 35 17 33 17 33 17 33
346 34 0 32 2 26 8 11 23 17 17 0 34 0 34 5 29 0 34
347 189 0 189 0 153 36 62 127 129 60 49 140 45 144 51 138 45 144
348 28 0 27 1 14 14 10 18 15 13 1 27 0 28 5 23 1 27
349 179 0 179 0 104 75 61 118 123 56 35 144 46 133 49 130 46 133
350 311 0 300 11 188 123 140 171 258 53 196 115 136 175 203 108 149 162
351 206 12 190 28 154 64 120 98 190 28 118 100 60 158 60 158 60 158
352 74 0 72 2 64 10 42 32 73 1 33 41 54 20 47 27 38 36
353 136 0 134 2 118 18 57 79 126 10 51 85 72 64 34 102 56 80
354 135 1 136 0 104 32 34 102 34 102 51 85 34 102 34 102 56 80
355 233 0 226 7 199 34 74 159 185 48 128 105 51 182 153 80 75 158
356 14 0 12 2 14 0 6 8 6 8 6 8 3 11 6 8 6 8
357 196 0 193 3 152 44 127 69 104 92 45 151 16 180 71 125 19 177
358 355 65 355 65 244 176 17 403 112 308 82 338 12 408 12 408 31 389
359 304 17 319 2 308 13 297 24 308 13 263 58 296 25 289 32 263 58
360 163 0 163 0 159 4 151 12 163 0 144 19 163 0 151 12 157 6
361 1891 1109 2904 96 2974 26 2800 200 2997 3 2835 165 2628 372 2719 281 2728 272
362 1867 1133 2910 90 2970 30 2805 195 2996 4 2835 165 2639 361 2689 311 2722 278
363 1866 1134 2893 107 2974 26 2793 207 2999 1 2832 168 2604 396 2699 301 2738 262
364 842 493 1298 37 1331 4 1233 102 1335 0 1272 63 1157 178 1210 125 1233 102
365 8 7 11 4 15 0 2 13 14 1 2 13 0 15 1 14 0 15
366 1996 1158 2962 192 2630 524 1270 1884 2321 833 1124 2030 1315 1839 1501 1653 1142 2012
367 73 38 110 1 110 1 42 69 97 14 78 33 73 38 107 4 48 63

1.12 Timing

The command AbsoluteTiming[] was used in Mathematica to obtain the elapsed time for each integrate call. In Maple, the command Usage was used as in the following example

cpu_time := Usage(assign ('result_of_int',int(expr,x)),output='realtime'

For all other CAS systems, the elapsed time to complete each integral was found by taking the difference between the time after the call completed from the time before the call was made. This was done using Python’s time.time() call.

All elapsed times shown are in seconds. A time limit of 3 CPU minutes was used for each integral. If the integrate command did not complete within this time limit, the integral was aborted and considered to have failed and assigned an F grade. The time used by failed integrals due to time out was not counted in the final statistics.

1.13 Verification

A verification phase was applied on the result of integration for Rubi and Mathematica.

Future version of this report will implement verification for the other CAS systems. For the integrals whose result was not run through a verification phase, it is assumed that the antiderivative was correct.

Verification phase also had 3 minutes time out. An integral whose result was not verified could still be correct, but further investigation is needed on those integrals. These integrals were marked in the summary table below and also in each integral separate section so they are easy to identify and locate.

1.14 Important notes about some of the results

Important note about Maxima results

Since tests were run in a batch mode, and using an automated script, then any integral where Maxima needed an interactive response from the user to answer a question during the evaluation of the integral will fail.

The exception raised is ValueError. Therefore Maxima results is lower than what would result if Maxima was run directly and each question was answered correctly.

The percentage of such failures were not counted for each test file, but for an example, for the Timofeev test file, there were about 14 such integrals out of total 705, or about 2 percent. This percentage can be higher or lower depending on the specific input test file.

Such integrals can be identified by looking at the output of the integration in each section for Maxima. The exception message will indicate the cause of error.

Maxima integrate was run using SageMath with the following settings set by default

'besselexpand : true' 
'display2d : false' 
'domain : complex' 
'keepfloat : true' 
'load(to_poly_solve)' 
'load(simplify_sum)' 
'load(abs_integrate)' 'load(diag)'
 

SageMath automatic loading of Maxima abs_integrate was found to cause some problems. So the following code was added to disable this effect.

 from sage.interfaces.maxima_lib import maxima_lib 
 maxima_lib.set('extra_definite_integration_methods', '[]') 
 maxima_lib.set('extra_integration_methods', '[]')
 

See https://ask.sagemath.org/question/43088/integrate-results-that-are-different-from-using-maxima/ for reference.

Important note about FriCAS result

There were few integrals which failed due to SageMath interface and not because FriCAS system could not do the integration.

These will fail With error Exception raised: NotImplementedError.

The number of such cases seems to be very small. About 1 or 2 percent of all integrals. These can be identified by looking at the exception message given in the result.

Important note about finding leaf size of antiderivative

For Mathematica, Rubi, and Maple, the builtin system function LeafSize was used to find the leaf size of each antiderivative.

The other CAS systems (SageMath and Sympy) do not have special builtin function for this purpose at this time. Therefore the leaf size for Fricas and Sympy antiderivative was determined using the following function, thanks to user slelievre at https://ask.sagemath.org/question/57123/could-we-have-a-leaf_count-function-in-base-sagemath/

def tree_size(expr): 
    r""" 
    Return the tree size of this expression. 
    """ 
    if expr not in SR: 
        # deal with lists, tuples, vectors 
        return 1 + sum(tree_size(a) for a in expr) 
    expr = SR(expr) 
    x, aa = expr.operator(), expr.operands() 
    if x is None: 
        return 1 
    else: 
        return 1 + sum(tree_size(a) for a in aa)
 

For Sympy, which was called directly from Python, the following code was used to obtain the leafsize of its result

try: 
  # 1.7 is a fudge factor since it is low side from actual leaf count 
  leafCount = round(1.7*count_ops(anti)) 
 
  except Exception as ee: 
         leafCount =1
 

Important note about Mupad results

Matlab’s symbolic toolbox does not have a leaf count function to measure the size of the antiderivative. Maple was used to determine the leaf size of Mupad output by post processing Mupad result.

Currently no grading of the antiderivative for Mupad is implemented. If it can integrate the problem, it was assigned a B grade automatically as a placeholder. In the future, when grading function is implemented for Mupad, the tests will be rerun again.

The following is an example of using Matlab’s symbolic toolbox (Mupad) to solve an integral

integrand = evalin(symengine,'cos(x)*sin(x)') 
the_variable = evalin(symengine,'x') 
anti = int(integrand,the_variable)
 

Which gives sin(x)^2/2

1.15 Current tree layout of integration tests

1.16 Design of the test system

The following diagram gives a high level view of the current test build system.