\(\int 3 e^{-2 x^3-x^6} x^2 (1+x^3)^2 \, dx\) [173]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [C] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 39 \[ \int 3 e^{-2 x^3-x^6} x^2 \left (1+x^3\right )^2 \, dx=-\frac {1}{2} e^{-2 x^3-x^6} \left (1+x^3\right )+\frac {1}{4} e \sqrt {\pi } \text {erf}\left (1+x^3\right ) \] Output:

-1/2*exp(-x^6-2*x^3)*(x^3+1)+1/4*exp(1)*Pi^(1/2)*erf(x^3+1)
 

Mathematica [A] (verified)

Time = 0.45 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.95 \[ \int 3 e^{-2 x^3-x^6} x^2 \left (1+x^3\right )^2 \, dx=\frac {1}{4} \left (-2 e^{-x^3 \left (2+x^3\right )} \left (1+x^3\right )+e \sqrt {\pi } \text {erf}\left (1+x^3\right )\right ) \] Input:

Integrate[3*E^(-2*x^3 - x^6)*x^2*(1 + x^3)^2,x]
 

Output:

((-2*(1 + x^3))/E^(x^3*(2 + x^3)) + E*Sqrt[Pi]*Erf[1 + x^3])/4
 

Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 39, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {27, 7266, 2667, 2664, 2634}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int 3 e^{-x^6-2 x^3} x^2 \left (x^3+1\right )^2 \, dx\)

\(\Big \downarrow \) 27

\(\displaystyle 3 \int e^{-x^6-2 x^3} x^2 \left (x^3+1\right )^2dx\)

\(\Big \downarrow \) 7266

\(\displaystyle \int e^{-x^6-2 x^3} \left (x^3+1\right )^2dx^3\)

\(\Big \downarrow \) 2667

\(\displaystyle \frac {1}{2} \int e^{-x^6-2 x^3}dx^3-\frac {1}{2} e^{-x^6-2 x^3} \left (x^3+1\right )\)

\(\Big \downarrow \) 2664

\(\displaystyle \frac {1}{2} e \int e^{-\left (x^3+1\right )^2}dx^3-\frac {1}{2} e^{-x^6-2 x^3} \left (x^3+1\right )\)

\(\Big \downarrow \) 2634

\(\displaystyle \frac {1}{4} e \sqrt {\pi } \text {erf}\left (x^3+1\right )-\frac {1}{2} e^{-x^6-2 x^3} \left (x^3+1\right )\)

Input:

Int[3*E^(-2*x^3 - x^6)*x^2*(1 + x^3)^2,x]
 

Output:

-1/2*(E^(-2*x^3 - x^6)*(1 + x^3)) + (E*Sqrt[Pi]*Erf[1 + x^3])/4
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2634
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt 
[Pi]*(Erf[(c + d*x)*Rt[(-b)*Log[F], 2]]/(2*d*Rt[(-b)*Log[F], 2])), x] /; Fr 
eeQ[{F, a, b, c, d}, x] && NegQ[b]
 

rule 2664
Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[F^(a - b^2/ 
(4*c))   Int[F^((b + 2*c*x)^2/(4*c)), x], x] /; FreeQ[{F, a, b, c}, x]
 

rule 2667
Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_.) + (e_.)*(x_))^(m_), x_S 
ymbol] :> Simp[e*(d + e*x)^(m - 1)*(F^(a + b*x + c*x^2)/(2*c*Log[F])), x] - 
 Simp[(m - 1)*(e^2/(2*c*Log[F]))   Int[(d + e*x)^(m - 2)*F^(a + b*x + c*x^2 
), x], x] /; FreeQ[{F, a, b, c, d, e}, x] && EqQ[b*e - 2*c*d, 0] && GtQ[m, 
1]
 

rule 7266
Int[(u_)*(x_)^(m_.), x_Symbol] :> Simp[1/(m + 1)   Subst[Int[SubstFor[x^(m 
+ 1), u, x], x], x, x^(m + 1)], x] /; FreeQ[m, x] && NeQ[m, -1] && Function 
OfQ[x^(m + 1), u, x]
 
Maple [F]

\[\int 3 \,{\mathrm e}^{-x^{6}-2 x^{3}} x^{2} \left (x^{3}+1\right )^{2}d x\]

Input:

int(3*exp(-x^6-2*x^3)*x^2*(x^3+1)^2,x)
 

Output:

int(3*exp(-x^6-2*x^3)*x^2*(x^3+1)^2,x)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 33, normalized size of antiderivative = 0.85 \[ \int 3 e^{-2 x^3-x^6} x^2 \left (1+x^3\right )^2 \, dx=\frac {1}{4} \, \sqrt {\pi } \operatorname {erf}\left (x^{3} + 1\right ) e - \frac {1}{2} \, {\left (x^{3} + 1\right )} e^{\left (-x^{6} - 2 \, x^{3}\right )} \] Input:

integrate(3*exp(-x^6-2*x^3)*x^2*(x^3+1)^2,x, algorithm="fricas")
 

Output:

1/4*sqrt(pi)*erf(x^3 + 1)*e - 1/2*(x^3 + 1)*e^(-x^6 - 2*x^3)
 

Sympy [F]

\[ \int 3 e^{-2 x^3-x^6} x^2 \left (1+x^3\right )^2 \, dx=3 \left (\int x^{2} e^{- 2 x^{3}} e^{- x^{6}}\, dx + \int 2 x^{5} e^{- 2 x^{3}} e^{- x^{6}}\, dx + \int x^{8} e^{- 2 x^{3}} e^{- x^{6}}\, dx\right ) \] Input:

integrate(3*exp(-x**6-2*x**3)*x**2*(x**3+1)**2,x)
 

Output:

3*(Integral(x**2*exp(-2*x**3)*exp(-x**6), x) + Integral(2*x**5*exp(-2*x**3 
)*exp(-x**6), x) + Integral(x**8*exp(-2*x**3)*exp(-x**6), x))
 

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.17 (sec) , antiderivative size = 137, normalized size of antiderivative = 3.51 \[ \int 3 e^{-2 x^3-x^6} x^2 \left (1+x^3\right )^2 \, dx=\frac {1}{2} \, \sqrt {\pi } \operatorname {erf}\left (x^{3} + 1\right ) e + \frac {1}{2} i \, {\left (\frac {i \, {\left (x^{3} + 1\right )}^{3} \Gamma \left (\frac {3}{2}, {\left (x^{3} + 1\right )}^{2}\right )}{{\left ({\left (x^{3} + 1\right )}^{2}\right )}^{\frac {3}{2}}} - \frac {i \, \sqrt {\pi } {\left (x^{3} + 1\right )} {\left (\operatorname {erf}\left (\sqrt {{\left (x^{3} + 1\right )}^{2}}\right ) - 1\right )}}{\sqrt {{\left (x^{3} + 1\right )}^{2}}} - 2 i \, e^{\left (-{\left (x^{3} + 1\right )}^{2}\right )}\right )} e + i \, {\left (\frac {i \, \sqrt {\pi } {\left (x^{3} + 1\right )} {\left (\operatorname {erf}\left (\sqrt {{\left (x^{3} + 1\right )}^{2}}\right ) - 1\right )}}{\sqrt {{\left (x^{3} + 1\right )}^{2}}} + i \, e^{\left (-{\left (x^{3} + 1\right )}^{2}\right )}\right )} e \] Input:

integrate(3*exp(-x^6-2*x^3)*x^2*(x^3+1)^2,x, algorithm="maxima")
 

Output:

1/2*sqrt(pi)*erf(x^3 + 1)*e + 1/2*I*(I*(x^3 + 1)^3*gamma(3/2, (x^3 + 1)^2) 
/((x^3 + 1)^2)^(3/2) - I*sqrt(pi)*(x^3 + 1)*(erf(sqrt((x^3 + 1)^2)) - 1)/s 
qrt((x^3 + 1)^2) - 2*I*e^(-(x^3 + 1)^2))*e + I*(I*sqrt(pi)*(x^3 + 1)*(erf( 
sqrt((x^3 + 1)^2)) - 1)/sqrt((x^3 + 1)^2) + I*e^(-(x^3 + 1)^2))*e
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 33, normalized size of antiderivative = 0.85 \[ \int 3 e^{-2 x^3-x^6} x^2 \left (1+x^3\right )^2 \, dx=\frac {1}{4} \, \sqrt {\pi } \operatorname {erf}\left (x^{3} + 1\right ) e - \frac {1}{2} \, {\left (x^{3} + 1\right )} e^{\left (-x^{6} - 2 \, x^{3}\right )} \] Input:

integrate(3*exp(-x^6-2*x^3)*x^2*(x^3+1)^2,x, algorithm="giac")
 

Output:

1/4*sqrt(pi)*erf(x^3 + 1)*e - 1/2*(x^3 + 1)*e^(-x^6 - 2*x^3)
 

Mupad [B] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 45, normalized size of antiderivative = 1.15 \[ \int 3 e^{-2 x^3-x^6} x^2 \left (1+x^3\right )^2 \, dx=\frac {\sqrt {\pi }\,\mathrm {e}\,\mathrm {erf}\left (x^3+1\right )}{4}-\frac {x^3\,{\mathrm {e}}^{-x^6-2\,x^3}}{2}-\frac {{\mathrm {e}}^{-x^6-2\,x^3}}{2} \] Input:

int(3*x^2*exp(- 2*x^3 - x^6)*(x^3 + 1)^2,x)
 

Output:

(pi^(1/2)*exp(1)*erf(x^3 + 1))/4 - (x^3*exp(- 2*x^3 - x^6))/2 - exp(- 2*x^ 
3 - x^6)/2
 

Reduce [F]

\[ \int 3 e^{-2 x^3-x^6} x^2 \left (1+x^3\right )^2 \, dx=\frac {3 e^{x^{6}+2 x^{3}} \left (\int \frac {x^{2}}{e^{x^{6}+2 x^{3}}}d x \right )-x^{3}-1}{2 e^{x^{6}+2 x^{3}}} \] Input:

int(3*exp(-x^6-2*x^3)*x^2*(x^3+1)^2,x)
 

Output:

(3*e**(x**6 + 2*x**3)*int(x**2/e**(x**6 + 2*x**3),x) - x**3 - 1)/(2*e**(x* 
*6 + 2*x**3))