\(\int \frac {1}{128} e^{-x} (e^{2 e^2} x+e^{2 e^2} (2 x-x^2) \log (x)) \, dx\) [1454]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 38, antiderivative size = 20 \[ \int \frac {1}{128} e^{-x} \left (e^{2 e^2} x+e^{2 e^2} \left (2 x-x^2\right ) \log (x)\right ) \, dx=\frac {1}{128} e^{2 e^2-x} x^2 \log (x) \] Output:

1/128*exp(exp(2))^2/exp(x)*x^2*ln(x)
 

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 20, normalized size of antiderivative = 1.00 \[ \int \frac {1}{128} e^{-x} \left (e^{2 e^2} x+e^{2 e^2} \left (2 x-x^2\right ) \log (x)\right ) \, dx=\frac {1}{128} e^{2 e^2-x} x^2 \log (x) \] Input:

Integrate[(E^(2*E^2)*x + E^(2*E^2)*(2*x - x^2)*Log[x])/(128*E^x),x]
 

Output:

(E^(2*E^2 - x)*x^2*Log[x])/128
 

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {27, 7292, 2726}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{128} e^{-x} \left (e^{2 e^2} \left (2 x-x^2\right ) \log (x)+e^{2 e^2} x\right ) \, dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{128} \int e^{-x} \left (e^{2 e^2} x+e^{2 e^2} \left (2 x-x^2\right ) \log (x)\right )dx\)

\(\Big \downarrow \) 7292

\(\displaystyle \frac {1}{128} \int e^{2 e^2-x} x (-x \log (x)+2 \log (x)+1)dx\)

\(\Big \downarrow \) 2726

\(\displaystyle \frac {1}{128} e^{2 e^2-x} x^2 \log (x)\)

Input:

Int[(E^(2*E^2)*x + E^(2*E^2)*(2*x - x^2)*Log[x])/(128*E^x),x]
 

Output:

(E^(2*E^2 - x)*x^2*Log[x])/128
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2726
Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = v*(y/(Log[F]*D[u, 
 x]))}, Simp[F^u*z, x] /; EqQ[D[z, x], w*y]] /; FreeQ[F, x]
 

rule 7292
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =! 
= u]
 
Maple [A] (warning: unable to verify)

Time = 0.24 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.85

method result size
norman \(\frac {{\mathrm e}^{2 \,{\mathrm e}^{2}} {\mathrm e}^{-x} x^{2} \ln \left (x \right )}{128}\) \(17\)
risch \(\frac {x^{2} \ln \left (x \right ) {\mathrm e}^{2 \,{\mathrm e}^{2}-x}}{128}\) \(17\)
parallelrisch \(\frac {{\mathrm e}^{2 \,{\mathrm e}^{2}} {\mathrm e}^{-x} x^{2} \ln \left (x \right )}{128}\) \(17\)
orering \(-\frac {x \left (-3+2 x \right ) \left (\left (-x^{2}+2 x \right ) {\mathrm e}^{2 \,{\mathrm e}^{2}} \ln \left (x \right )+x \,{\mathrm e}^{2 \,{\mathrm e}^{2}}\right ) {\mathrm e}^{-x}}{128 \left (x^{2}-3 x +4\right )}-\frac {x^{2} \left (\frac {\left (\left (2-2 x \right ) {\mathrm e}^{2 \,{\mathrm e}^{2}} \ln \left (x \right )+\frac {\left (-x^{2}+2 x \right ) {\mathrm e}^{2 \,{\mathrm e}^{2}}}{x}+{\mathrm e}^{2 \,{\mathrm e}^{2}}\right ) {\mathrm e}^{-x}}{128}-\frac {\left (\left (-x^{2}+2 x \right ) {\mathrm e}^{2 \,{\mathrm e}^{2}} \ln \left (x \right )+x \,{\mathrm e}^{2 \,{\mathrm e}^{2}}\right ) {\mathrm e}^{-x}}{128}\right )}{x^{2}-3 x +4}\) \(139\)

Input:

int(1/128*((-x^2+2*x)*exp(exp(2))^2*ln(x)+x*exp(exp(2))^2)/exp(x),x,method 
=_RETURNVERBOSE)
 

Output:

1/128*exp(exp(2))^2/exp(x)*x^2*ln(x)
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.80 \[ \int \frac {1}{128} e^{-x} \left (e^{2 e^2} x+e^{2 e^2} \left (2 x-x^2\right ) \log (x)\right ) \, dx=\frac {1}{128} \, x^{2} e^{\left (-x + 2 \, e^{2}\right )} \log \left (x\right ) \] Input:

integrate(1/128*((-x^2+2*x)*exp(exp(2))^2*log(x)+x*exp(exp(2))^2)/exp(x),x 
, algorithm="fricas")
 

Output:

1/128*x^2*e^(-x + 2*e^2)*log(x)
 

Sympy [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.85 \[ \int \frac {1}{128} e^{-x} \left (e^{2 e^2} x+e^{2 e^2} \left (2 x-x^2\right ) \log (x)\right ) \, dx=\frac {x^{2} e^{- x} e^{2 e^{2}} \log {\left (x \right )}}{128} \] Input:

integrate(1/128*((-x**2+2*x)*exp(exp(2))**2*ln(x)+x*exp(exp(2))**2)/exp(x) 
,x)
 

Output:

x**2*exp(-x)*exp(2*exp(2))*log(x)/128
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 50 vs. \(2 (16) = 32\).

Time = 0.15 (sec) , antiderivative size = 50, normalized size of antiderivative = 2.50 \[ \int \frac {1}{128} e^{-x} \left (e^{2 e^2} x+e^{2 e^2} \left (2 x-x^2\right ) \log (x)\right ) \, dx=\frac {1}{128} \, {\left (x^{2} e^{\left (2 \, e^{2}\right )} \log \left (x\right ) + x e^{\left (2 \, e^{2}\right )} + e^{\left (2 \, e^{2}\right )}\right )} e^{\left (-x\right )} - \frac {1}{128} \, {\left (x e^{\left (2 \, e^{2}\right )} + e^{\left (2 \, e^{2}\right )}\right )} e^{\left (-x\right )} \] Input:

integrate(1/128*((-x^2+2*x)*exp(exp(2))^2*log(x)+x*exp(exp(2))^2)/exp(x),x 
, algorithm="maxima")
 

Output:

1/128*(x^2*e^(2*e^2)*log(x) + x*e^(2*e^2) + e^(2*e^2))*e^(-x) - 1/128*(x*e 
^(2*e^2) + e^(2*e^2))*e^(-x)
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.80 \[ \int \frac {1}{128} e^{-x} \left (e^{2 e^2} x+e^{2 e^2} \left (2 x-x^2\right ) \log (x)\right ) \, dx=\frac {1}{128} \, x^{2} e^{\left (-x + 2 \, e^{2}\right )} \log \left (x\right ) \] Input:

integrate(1/128*((-x^2+2*x)*exp(exp(2))^2*log(x)+x*exp(exp(2))^2)/exp(x),x 
, algorithm="giac")
 

Output:

1/128*x^2*e^(-x + 2*e^2)*log(x)
 

Mupad [B] (verification not implemented)

Time = 1.57 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.80 \[ \int \frac {1}{128} e^{-x} \left (e^{2 e^2} x+e^{2 e^2} \left (2 x-x^2\right ) \log (x)\right ) \, dx=\frac {x^2\,{\mathrm {e}}^{2\,{\mathrm {e}}^2}\,{\mathrm {e}}^{-x}\,\ln \left (x\right )}{128} \] Input:

int(exp(-x)*((x*exp(2*exp(2)))/128 + (exp(2*exp(2))*log(x)*(2*x - x^2))/12 
8),x)
 

Output:

(x^2*exp(2*exp(2))*exp(-x)*log(x))/128
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.95 \[ \int \frac {1}{128} e^{-x} \left (e^{2 e^2} x+e^{2 e^2} \left (2 x-x^2\right ) \log (x)\right ) \, dx=\frac {e^{2 e^{2}} \mathrm {log}\left (x \right ) x^{2}}{128 e^{x}} \] Input:

int(1/128*((-x^2+2*x)*exp(exp(2))^2*log(x)+x*exp(exp(2))^2)/exp(x),x)
 

Output:

(e**(2*e**2)*log(x)*x**2)/(128*e**x)