\(\int \frac {-5 \log (\log (3))+e^{e^x} \log (\log (3))+24 e^{e^x+x} \log (25-10 e^{e^x}+e^{2 e^x}) \log (\log (3))+8 e^{e^x+x} \log ^3(25-10 e^{e^x}+e^{2 e^x}) \log (\log (3))}{-5+e^{e^x}} \, dx\) [1260]

Optimal result
Mathematica [A] (verified)
Rubi [C] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [F]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 85, antiderivative size = 26 \[ \int \frac {-5 \log (\log (3))+e^{e^x} \log (\log (3))+24 e^{e^x+x} \log \left (25-10 e^{e^x}+e^{2 e^x}\right ) \log (\log (3))+8 e^{e^x+x} \log ^3\left (25-10 e^{e^x}+e^{2 e^x}\right ) \log (\log (3))}{-5+e^{e^x}} \, dx=5+\left (x+\left (3+\log ^2\left (\left (5-e^{e^x}\right )^2\right )\right )^2\right ) \log (\log (3)) \] Output:

(x+(ln((5-exp(exp(x)))^2)^2+3)^2)*ln(ln(3))+5
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 32, normalized size of antiderivative = 1.23 \[ \int \frac {-5 \log (\log (3))+e^{e^x} \log (\log (3))+24 e^{e^x+x} \log \left (25-10 e^{e^x}+e^{2 e^x}\right ) \log (\log (3))+8 e^{e^x+x} \log ^3\left (25-10 e^{e^x}+e^{2 e^x}\right ) \log (\log (3))}{-5+e^{e^x}} \, dx=\left (x+6 \log ^2\left (\left (-5+e^{e^x}\right )^2\right )+\log ^4\left (\left (-5+e^{e^x}\right )^2\right )\right ) \log (\log (3)) \] Input:

Integrate[(-5*Log[Log[3]] + E^E^x*Log[Log[3]] + 24*E^(E^x + x)*Log[25 - 10 
*E^E^x + E^(2*E^x)]*Log[Log[3]] + 8*E^(E^x + x)*Log[25 - 10*E^E^x + E^(2*E 
^x)]^3*Log[Log[3]])/(-5 + E^E^x),x]
 

Output:

(x + 6*Log[(-5 + E^E^x)^2]^2 + Log[(-5 + E^E^x)^2]^4)*Log[Log[3]]
 

Rubi [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 1.20 (sec) , antiderivative size = 285, normalized size of antiderivative = 10.96, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.047, Rules used = {2720, 27, 7293, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {8 e^{x+e^x} \log (\log (3)) \log ^3\left (-10 e^{e^x}+e^{2 e^x}+25\right )+24 e^{x+e^x} \log (\log (3)) \log \left (-10 e^{e^x}+e^{2 e^x}+25\right )+e^{e^x} \log (\log (3))-5 \log (\log (3))}{e^{e^x}-5} \, dx\)

\(\Big \downarrow \) 2720

\(\displaystyle \int \frac {e^{-x} \log (\log (3)) \left (-e^{e^x}-8 e^{x+e^x} \log ^3\left (\left (e^{e^x}-5\right )^2\right )-24 e^{x+e^x} \log \left (\left (e^{e^x}-5\right )^2\right )+5\right )}{5-e^{e^x}}de^x\)

\(\Big \downarrow \) 27

\(\displaystyle \log (\log (3)) \int \frac {e^{-x} \left (-8 e^{x+e^x} \log ^3\left (\left (-5+e^{e^x}\right )^2\right )-24 e^{x+e^x} \log \left (\left (-5+e^{e^x}\right )^2\right )-e^{e^x}+5\right )}{5-e^{e^x}}de^x\)

\(\Big \downarrow \) 7293

\(\displaystyle \log (\log (3)) \int \left (\frac {40 \log \left (\left (-5+e^{e^x}\right )^2\right ) \left (\log ^2\left (\left (-5+e^{e^x}\right )^2\right )+3\right )}{-5+e^{e^x}}+e^{-x} \left (8 e^x \log ^3\left (\left (-5+e^{e^x}\right )^2\right )+24 e^x \log \left (\left (-5+e^{e^x}\right )^2\right )+1\right )\right )de^x\)

\(\Big \downarrow \) 2009

\(\displaystyle \log (\log (3)) \left (48 \operatorname {PolyLog}\left (2,\frac {5}{5-e^{e^x}}\right )+48 \operatorname {PolyLog}\left (2,1-\frac {e^{e^x}}{5}\right )+384 \operatorname {PolyLog}\left (4,\frac {5}{5-e^{e^x}}\right )+384 \operatorname {PolyLog}\left (4,1-\frac {e^{e^x}}{5}\right )+48 \operatorname {PolyLog}\left (2,\frac {5}{5-e^{e^x}}\right ) \log ^2\left (\left (e^{e^x}-5\right )^2\right )+48 \operatorname {PolyLog}\left (2,1-\frac {e^{e^x}}{5}\right ) \log ^2\left (\left (e^{e^x}-5\right )^2\right )+192 \operatorname {PolyLog}\left (3,\frac {5}{5-e^{e^x}}\right ) \log \left (\left (e^{e^x}-5\right )^2\right )-192 \operatorname {PolyLog}\left (3,1-\frac {e^{e^x}}{5}\right ) \log \left (\left (e^{e^x}-5\right )^2\right )+8 \log \left (\frac {e^{e^x}}{5}\right ) \log ^3\left (\left (e^{e^x}-5\right )^2\right )-8 \log \left (1-\frac {5}{5-e^{e^x}}\right ) \log ^3\left (\left (e^{e^x}-5\right )^2\right )+24 \log \left (\frac {e^{e^x}}{5}\right ) \log \left (\left (e^{e^x}-5\right )^2\right )-24 \log \left (1-\frac {5}{5-e^{e^x}}\right ) \log \left (\left (e^{e^x}-5\right )^2\right )+\log \left (e^x\right )\right )\)

Input:

Int[(-5*Log[Log[3]] + E^E^x*Log[Log[3]] + 24*E^(E^x + x)*Log[25 - 10*E^E^x 
 + E^(2*E^x)]*Log[Log[3]] + 8*E^(E^x + x)*Log[25 - 10*E^E^x + E^(2*E^x)]^3 
*Log[Log[3]])/(-5 + E^E^x),x]
 

Output:

Log[Log[3]]*(Log[E^x] + 24*Log[E^E^x/5]*Log[(-5 + E^E^x)^2] + 8*Log[E^E^x/ 
5]*Log[(-5 + E^E^x)^2]^3 - 24*Log[(-5 + E^E^x)^2]*Log[1 - 5/(5 - E^E^x)] - 
 8*Log[(-5 + E^E^x)^2]^3*Log[1 - 5/(5 - E^E^x)] + 48*PolyLog[2, 5/(5 - E^E 
^x)] + 48*Log[(-5 + E^E^x)^2]^2*PolyLog[2, 5/(5 - E^E^x)] + 48*PolyLog[2, 
1 - E^E^x/5] + 48*Log[(-5 + E^E^x)^2]^2*PolyLog[2, 1 - E^E^x/5] + 192*Log[ 
(-5 + E^E^x)^2]*PolyLog[3, 5/(5 - E^E^x)] - 192*Log[(-5 + E^E^x)^2]*PolyLo 
g[3, 1 - E^E^x/5] + 384*PolyLog[4, 5/(5 - E^E^x)] + 384*PolyLog[4, 1 - E^E 
^x/5])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2720
Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Simp[v/D[v, x] 
   Subst[Int[FunctionOfExponentialFunction[u, x]/x, x], x, v], x]] /; Funct 
ionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; FreeQ 
[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x)) 
*(F_)[v_] /; FreeQ[{a, b, c}, x] && InverseFunctionQ[F[x]]]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
Maple [A] (verified)

Time = 1.49 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.15

method result size
parts \(\ln \left (\ln \left (3\right )\right ) x +\ln \left (\ln \left (3\right )\right ) {\left (\ln \left ({\mathrm e}^{2 \,{\mathrm e}^{x}}-10 \,{\mathrm e}^{{\mathrm e}^{x}}+25\right )^{2}+3\right )}^{2}\) \(30\)
parallelrisch \(\ln \left (\ln \left (3\right )\right ) \ln \left ({\mathrm e}^{2 \,{\mathrm e}^{x}}-10 \,{\mathrm e}^{{\mathrm e}^{x}}+25\right )^{4}+6 \ln \left (\ln \left (3\right )\right ) \ln \left ({\mathrm e}^{2 \,{\mathrm e}^{x}}-10 \,{\mathrm e}^{{\mathrm e}^{x}}+25\right )^{2}+\ln \left (\ln \left (3\right )\right ) x\) \(46\)
derivativedivides \(\left (24 \ln \left (\ln \left (3\right )\right ) {\left (\ln \left (\left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{2}\right )-2 \ln \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )\right )}^{2}+24 \ln \left (\ln \left (3\right )\right )\right ) \ln \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{2}+\left (8 \ln \left (\ln \left (3\right )\right ) {\left (\ln \left (\left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{2}\right )-2 \ln \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )\right )}^{3}+24 \ln \left (\ln \left (3\right )\right ) \left (\ln \left (\left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{2}\right )-2 \ln \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )\right )\right ) \ln \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )+16 \ln \left (\ln \left (3\right )\right ) \ln \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{4}+32 \ln \left (\ln \left (3\right )\right ) \left (\ln \left (\left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{2}\right )-2 \ln \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )\right ) \ln \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{3}+\ln \left (\ln \left (3\right )\right ) \ln \left ({\mathrm e}^{x}\right )\) \(145\)
default \(\left (24 \ln \left (\ln \left (3\right )\right ) {\left (\ln \left (\left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{2}\right )-2 \ln \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )\right )}^{2}+24 \ln \left (\ln \left (3\right )\right )\right ) \ln \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{2}+\left (8 \ln \left (\ln \left (3\right )\right ) {\left (\ln \left (\left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{2}\right )-2 \ln \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )\right )}^{3}+24 \ln \left (\ln \left (3\right )\right ) \left (\ln \left (\left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{2}\right )-2 \ln \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )\right )\right ) \ln \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )+16 \ln \left (\ln \left (3\right )\right ) \ln \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{4}+32 \ln \left (\ln \left (3\right )\right ) \left (\ln \left (\left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{2}\right )-2 \ln \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )\right ) \ln \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )^{3}+\ln \left (\ln \left (3\right )\right ) \ln \left ({\mathrm e}^{x}\right )\) \(145\)
risch \(\text {Expression too large to display}\) \(611\)

Input:

int((8*exp(x)*ln(ln(3))*exp(exp(x))*ln(exp(exp(x))^2-10*exp(exp(x))+25)^3+ 
24*exp(x)*ln(ln(3))*exp(exp(x))*ln(exp(exp(x))^2-10*exp(exp(x))+25)+ln(ln( 
3))*exp(exp(x))-5*ln(ln(3)))/(exp(exp(x))-5),x,method=_RETURNVERBOSE)
 

Output:

ln(ln(3))*x+ln(ln(3))*(ln(exp(exp(x))^2-10*exp(exp(x))+25)^2+3)^2
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 81 vs. \(2 (22) = 44\).

Time = 0.09 (sec) , antiderivative size = 81, normalized size of antiderivative = 3.12 \[ \int \frac {-5 \log (\log (3))+e^{e^x} \log (\log (3))+24 e^{e^x+x} \log \left (25-10 e^{e^x}+e^{2 e^x}\right ) \log (\log (3))+8 e^{e^x+x} \log ^3\left (25-10 e^{e^x}+e^{2 e^x}\right ) \log (\log (3))}{-5+e^{e^x}} \, dx=\log \left ({\left (25 \, e^{\left (2 \, x\right )} + e^{\left (2 \, x + 2 \, e^{x}\right )} - 10 \, e^{\left (2 \, x + e^{x}\right )}\right )} e^{\left (-2 \, x\right )}\right )^{4} \log \left (\log \left (3\right )\right ) + 6 \, \log \left ({\left (25 \, e^{\left (2 \, x\right )} + e^{\left (2 \, x + 2 \, e^{x}\right )} - 10 \, e^{\left (2 \, x + e^{x}\right )}\right )} e^{\left (-2 \, x\right )}\right )^{2} \log \left (\log \left (3\right )\right ) + x \log \left (\log \left (3\right )\right ) \] Input:

integrate((8*exp(x)*log(log(3))*exp(exp(x))*log(exp(exp(x))^2-10*exp(exp(x 
))+25)^3+24*exp(x)*log(log(3))*exp(exp(x))*log(exp(exp(x))^2-10*exp(exp(x) 
)+25)+log(log(3))*exp(exp(x))-5*log(log(3)))/(exp(exp(x))-5),x, algorithm= 
"fricas")
 

Output:

log((25*e^(2*x) + e^(2*x + 2*e^x) - 10*e^(2*x + e^x))*e^(-2*x))^4*log(log( 
3)) + 6*log((25*e^(2*x) + e^(2*x + 2*e^x) - 10*e^(2*x + e^x))*e^(-2*x))^2* 
log(log(3)) + x*log(log(3))
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 54 vs. \(2 (22) = 44\).

Time = 0.20 (sec) , antiderivative size = 54, normalized size of antiderivative = 2.08 \[ \int \frac {-5 \log (\log (3))+e^{e^x} \log (\log (3))+24 e^{e^x+x} \log \left (25-10 e^{e^x}+e^{2 e^x}\right ) \log (\log (3))+8 e^{e^x+x} \log ^3\left (25-10 e^{e^x}+e^{2 e^x}\right ) \log (\log (3))}{-5+e^{e^x}} \, dx=x \log {\left (\log {\left (3 \right )} \right )} + \log {\left (e^{2 e^{x}} - 10 e^{e^{x}} + 25 \right )}^{4} \log {\left (\log {\left (3 \right )} \right )} + 6 \log {\left (e^{2 e^{x}} - 10 e^{e^{x}} + 25 \right )}^{2} \log {\left (\log {\left (3 \right )} \right )} \] Input:

integrate((8*exp(x)*ln(ln(3))*exp(exp(x))*ln(exp(exp(x))**2-10*exp(exp(x)) 
+25)**3+24*exp(x)*ln(ln(3))*exp(exp(x))*ln(exp(exp(x))**2-10*exp(exp(x))+2 
5)+ln(ln(3))*exp(exp(x))-5*ln(ln(3)))/(exp(exp(x))-5),x)
 

Output:

x*log(log(3)) + log(exp(2*exp(x)) - 10*exp(exp(x)) + 25)**4*log(log(3)) + 
6*log(exp(2*exp(x)) - 10*exp(exp(x)) + 25)**2*log(log(3))
 

Maxima [A] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 32, normalized size of antiderivative = 1.23 \[ \int \frac {-5 \log (\log (3))+e^{e^x} \log (\log (3))+24 e^{e^x+x} \log \left (25-10 e^{e^x}+e^{2 e^x}\right ) \log (\log (3))+8 e^{e^x+x} \log ^3\left (25-10 e^{e^x}+e^{2 e^x}\right ) \log (\log (3))}{-5+e^{e^x}} \, dx=16 \, \log \left (e^{\left (e^{x}\right )} - 5\right )^{4} \log \left (\log \left (3\right )\right ) + 24 \, \log \left (e^{\left (e^{x}\right )} - 5\right )^{2} \log \left (\log \left (3\right )\right ) + x \log \left (\log \left (3\right )\right ) \] Input:

integrate((8*exp(x)*log(log(3))*exp(exp(x))*log(exp(exp(x))^2-10*exp(exp(x 
))+25)^3+24*exp(x)*log(log(3))*exp(exp(x))*log(exp(exp(x))^2-10*exp(exp(x) 
)+25)+log(log(3))*exp(exp(x))-5*log(log(3)))/(exp(exp(x))-5),x, algorithm= 
"maxima")
 

Output:

16*log(e^(e^x) - 5)^4*log(log(3)) + 24*log(e^(e^x) - 5)^2*log(log(3)) + x* 
log(log(3))
 

Giac [F]

\[ \int \frac {-5 \log (\log (3))+e^{e^x} \log (\log (3))+24 e^{e^x+x} \log \left (25-10 e^{e^x}+e^{2 e^x}\right ) \log (\log (3))+8 e^{e^x+x} \log ^3\left (25-10 e^{e^x}+e^{2 e^x}\right ) \log (\log (3))}{-5+e^{e^x}} \, dx=\int { \frac {8 \, e^{\left (x + e^{x}\right )} \log \left (e^{\left (2 \, e^{x}\right )} - 10 \, e^{\left (e^{x}\right )} + 25\right )^{3} \log \left (\log \left (3\right )\right ) + 24 \, e^{\left (x + e^{x}\right )} \log \left (e^{\left (2 \, e^{x}\right )} - 10 \, e^{\left (e^{x}\right )} + 25\right ) \log \left (\log \left (3\right )\right ) + e^{\left (e^{x}\right )} \log \left (\log \left (3\right )\right ) - 5 \, \log \left (\log \left (3\right )\right )}{e^{\left (e^{x}\right )} - 5} \,d x } \] Input:

integrate((8*exp(x)*log(log(3))*exp(exp(x))*log(exp(exp(x))^2-10*exp(exp(x 
))+25)^3+24*exp(x)*log(log(3))*exp(exp(x))*log(exp(exp(x))^2-10*exp(exp(x) 
)+25)+log(log(3))*exp(exp(x))-5*log(log(3)))/(exp(exp(x))-5),x, algorithm= 
"giac")
 

Output:

integrate((8*e^(x + e^x)*log(e^(2*e^x) - 10*e^(e^x) + 25)^3*log(log(3)) + 
24*e^(x + e^x)*log(e^(2*e^x) - 10*e^(e^x) + 25)*log(log(3)) + e^(e^x)*log( 
log(3)) - 5*log(log(3)))/(e^(e^x) - 5), x)
 

Mupad [B] (verification not implemented)

Time = 3.60 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.46 \[ \int \frac {-5 \log (\log (3))+e^{e^x} \log (\log (3))+24 e^{e^x+x} \log \left (25-10 e^{e^x}+e^{2 e^x}\right ) \log (\log (3))+8 e^{e^x+x} \log ^3\left (25-10 e^{e^x}+e^{2 e^x}\right ) \log (\log (3))}{-5+e^{e^x}} \, dx=\ln \left (\ln \left (3\right )\right )\,\left ({\ln \left ({\mathrm {e}}^{2\,{\mathrm {e}}^x}-10\,{\mathrm {e}}^{{\mathrm {e}}^x}+25\right )}^4+6\,{\ln \left ({\mathrm {e}}^{2\,{\mathrm {e}}^x}-10\,{\mathrm {e}}^{{\mathrm {e}}^x}+25\right )}^2+x\right ) \] Input:

int((exp(exp(x))*log(log(3)) - 5*log(log(3)) + 24*log(exp(2*exp(x)) - 10*e 
xp(exp(x)) + 25)*exp(exp(x))*exp(x)*log(log(3)) + 8*log(exp(2*exp(x)) - 10 
*exp(exp(x)) + 25)^3*exp(exp(x))*exp(x)*log(log(3)))/(exp(exp(x)) - 5),x)
 

Output:

log(log(3))*(x + 6*log(exp(2*exp(x)) - 10*exp(exp(x)) + 25)^2 + log(exp(2* 
exp(x)) - 10*exp(exp(x)) + 25)^4)
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 46, normalized size of antiderivative = 1.77 \[ \int \frac {-5 \log (\log (3))+e^{e^x} \log (\log (3))+24 e^{e^x+x} \log \left (25-10 e^{e^x}+e^{2 e^x}\right ) \log (\log (3))+8 e^{e^x+x} \log ^3\left (25-10 e^{e^x}+e^{2 e^x}\right ) \log (\log (3))}{-5+e^{e^x}} \, dx=\mathrm {log}\left (\mathrm {log}\left (3\right )\right ) \left (\mathrm {log}\left (e^{2 e^{x}}-10 e^{e^{x}}+25\right )^{4}+6 \mathrm {log}\left (e^{2 e^{x}}-10 e^{e^{x}}+25\right )^{2}+x \right ) \] Input:

int((8*exp(x)*log(log(3))*exp(exp(x))*log(exp(exp(x))^2-10*exp(exp(x))+25) 
^3+24*exp(x)*log(log(3))*exp(exp(x))*log(exp(exp(x))^2-10*exp(exp(x))+25)+ 
log(log(3))*exp(exp(x))-5*log(log(3)))/(exp(exp(x))-5),x)
 

Output:

log(log(3))*(log(e**(2*e**x) - 10*e**(e**x) + 25)**4 + 6*log(e**(2*e**x) - 
 10*e**(e**x) + 25)**2 + x)