\(\int \frac {3 \log ^5(x)+2 \log ^6(x)+e^{e^{\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}}+\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}} (-8 x^5+(24 x^4+12 x^5) \log (x)+(-24 x^3-40 x^4) \log ^2(x)+(8 x^2+48 x^3) \log ^3(x)-24 x^2 \log ^4(x)+4 x \log ^5(x))}{\log ^5(x)} \, dx\) [2869]

Optimal result
Mathematica [A] (verified)
Rubi [F]
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 182, antiderivative size = 28 \[ \int \frac {3 \log ^5(x)+2 \log ^6(x)+e^{e^{\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}}+\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}} \left (-8 x^5+\left (24 x^4+12 x^5\right ) \log (x)+\left (-24 x^3-40 x^4\right ) \log ^2(x)+\left (8 x^2+48 x^3\right ) \log ^3(x)-24 x^2 \log ^4(x)+4 x \log ^5(x)\right )}{\log ^5(x)} \, dx=e^{e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}}+x+2 x \log (x) \] Output:

2*x*ln(x)+x+exp(exp(2/ln(x)^4*(x-ln(x))^4*x^2))
 

Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.00 \[ \int \frac {3 \log ^5(x)+2 \log ^6(x)+e^{e^{\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}}+\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}} \left (-8 x^5+\left (24 x^4+12 x^5\right ) \log (x)+\left (-24 x^3-40 x^4\right ) \log ^2(x)+\left (8 x^2+48 x^3\right ) \log ^3(x)-24 x^2 \log ^4(x)+4 x \log ^5(x)\right )}{\log ^5(x)} \, dx=e^{e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}}+x+2 x \log (x) \] Input:

Integrate[(3*Log[x]^5 + 2*Log[x]^6 + E^(E^((2*x^6 - 8*x^5*Log[x] + 12*x^4* 
Log[x]^2 - 8*x^3*Log[x]^3 + 2*x^2*Log[x]^4)/Log[x]^4) + (2*x^6 - 8*x^5*Log 
[x] + 12*x^4*Log[x]^2 - 8*x^3*Log[x]^3 + 2*x^2*Log[x]^4)/Log[x]^4)*(-8*x^5 
 + (24*x^4 + 12*x^5)*Log[x] + (-24*x^3 - 40*x^4)*Log[x]^2 + (8*x^2 + 48*x^ 
3)*Log[x]^3 - 24*x^2*Log[x]^4 + 4*x*Log[x]^5))/Log[x]^5,x]
 

Output:

E^E^((2*x^2*(x - Log[x])^4)/Log[x]^4) + x + 2*x*Log[x]
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (-8 x^5-24 x^2 \log ^4(x)+\left (12 x^5+24 x^4\right ) \log (x)+\left (-40 x^4-24 x^3\right ) \log ^2(x)+\left (48 x^3+8 x^2\right ) \log ^3(x)+4 x \log ^5(x)\right ) \exp \left (\exp \left (\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}\right )+\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}\right )+2 \log ^6(x)+3 \log ^5(x)}{\log ^5(x)} \, dx\)

\(\Big \downarrow \) 7239

\(\displaystyle \int \left (\frac {4 x \left (-2 x-\log ^2(x)+3 x \log (x)\right ) (x-\log (x))^3 \exp \left (\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}+2 x^2+e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}\right )}{\log ^5(x)}+2 \log (x)+3\right )dx\)

\(\Big \downarrow \) 7299

\(\displaystyle \int \left (\frac {4 x \left (-2 x-\log ^2(x)+3 x \log (x)\right ) (x-\log (x))^3 \exp \left (\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}+2 x^2+e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}\right )}{\log ^5(x)}+2 \log (x)+3\right )dx\)

Input:

Int[(3*Log[x]^5 + 2*Log[x]^6 + E^(E^((2*x^6 - 8*x^5*Log[x] + 12*x^4*Log[x] 
^2 - 8*x^3*Log[x]^3 + 2*x^2*Log[x]^4)/Log[x]^4) + (2*x^6 - 8*x^5*Log[x] + 
12*x^4*Log[x]^2 - 8*x^3*Log[x]^3 + 2*x^2*Log[x]^4)/Log[x]^4)*(-8*x^5 + (24 
*x^4 + 12*x^5)*Log[x] + (-24*x^3 - 40*x^4)*Log[x]^2 + (8*x^2 + 48*x^3)*Log 
[x]^3 - 24*x^2*Log[x]^4 + 4*x*Log[x]^5))/Log[x]^5,x]
 

Output:

$Aborted
 
Maple [A] (verified)

Time = 11.38 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.96

method result size
risch \(2 x \ln \left (x \right )+x +{\mathrm e}^{{\mathrm e}^{\frac {2 x^{2} \left (\ln \left (x \right )-x \right )^{4}}{\ln \left (x \right )^{4}}}}\) \(27\)
parallelrisch \(2 x \ln \left (x \right )+x +{\mathrm e}^{{\mathrm e}^{\frac {2 x^{2} \ln \left (x \right )^{4}-8 x^{3} \ln \left (x \right )^{3}+12 x^{4} \ln \left (x \right )^{2}-8 x^{5} \ln \left (x \right )+2 x^{6}}{\ln \left (x \right )^{4}}}}\) \(55\)

Input:

int(((4*x*ln(x)^5-24*x^2*ln(x)^4+(48*x^3+8*x^2)*ln(x)^3+(-40*x^4-24*x^3)*l 
n(x)^2+(12*x^5+24*x^4)*ln(x)-8*x^5)*exp((2*x^2*ln(x)^4-8*x^3*ln(x)^3+12*x^ 
4*ln(x)^2-8*x^5*ln(x)+2*x^6)/ln(x)^4)*exp(exp((2*x^2*ln(x)^4-8*x^3*ln(x)^3 
+12*x^4*ln(x)^2-8*x^5*ln(x)+2*x^6)/ln(x)^4))+2*ln(x)^6+3*ln(x)^5)/ln(x)^5, 
x,method=_RETURNVERBOSE)
 

Output:

2*x*ln(x)+x+exp(exp(2*x^2*(ln(x)-x)^4/ln(x)^4))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 193 vs. \(2 (26) = 52\).

Time = 0.11 (sec) , antiderivative size = 193, normalized size of antiderivative = 6.89 \[ \int \frac {3 \log ^5(x)+2 \log ^6(x)+e^{e^{\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}}+\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}} \left (-8 x^5+\left (24 x^4+12 x^5\right ) \log (x)+\left (-24 x^3-40 x^4\right ) \log ^2(x)+\left (8 x^2+48 x^3\right ) \log ^3(x)-24 x^2 \log ^4(x)+4 x \log ^5(x)\right )}{\log ^5(x)} \, dx={\left ({\left (2 \, x \log \left (x\right ) + x\right )} e^{\left (\frac {2 \, {\left (x^{6} - 4 \, x^{5} \log \left (x\right ) + 6 \, x^{4} \log \left (x\right )^{2} - 4 \, x^{3} \log \left (x\right )^{3} + x^{2} \log \left (x\right )^{4}\right )}}{\log \left (x\right )^{4}}\right )} + e^{\left (\frac {2 \, x^{6} - 8 \, x^{5} \log \left (x\right ) + 12 \, x^{4} \log \left (x\right )^{2} - 8 \, x^{3} \log \left (x\right )^{3} + 2 \, x^{2} \log \left (x\right )^{4} + e^{\left (\frac {2 \, {\left (x^{6} - 4 \, x^{5} \log \left (x\right ) + 6 \, x^{4} \log \left (x\right )^{2} - 4 \, x^{3} \log \left (x\right )^{3} + x^{2} \log \left (x\right )^{4}\right )}}{\log \left (x\right )^{4}}\right )} \log \left (x\right )^{4}}{\log \left (x\right )^{4}}\right )}\right )} e^{\left (-\frac {2 \, {\left (x^{6} - 4 \, x^{5} \log \left (x\right ) + 6 \, x^{4} \log \left (x\right )^{2} - 4 \, x^{3} \log \left (x\right )^{3} + x^{2} \log \left (x\right )^{4}\right )}}{\log \left (x\right )^{4}}\right )} \] Input:

integrate(((4*x*log(x)^5-24*x^2*log(x)^4+(48*x^3+8*x^2)*log(x)^3+(-40*x^4- 
24*x^3)*log(x)^2+(12*x^5+24*x^4)*log(x)-8*x^5)*exp((2*x^2*log(x)^4-8*x^3*l 
og(x)^3+12*x^4*log(x)^2-8*x^5*log(x)+2*x^6)/log(x)^4)*exp(exp((2*x^2*log(x 
)^4-8*x^3*log(x)^3+12*x^4*log(x)^2-8*x^5*log(x)+2*x^6)/log(x)^4))+2*log(x) 
^6+3*log(x)^5)/log(x)^5,x, algorithm="fricas")
 

Output:

((2*x*log(x) + x)*e^(2*(x^6 - 4*x^5*log(x) + 6*x^4*log(x)^2 - 4*x^3*log(x) 
^3 + x^2*log(x)^4)/log(x)^4) + e^((2*x^6 - 8*x^5*log(x) + 12*x^4*log(x)^2 
- 8*x^3*log(x)^3 + 2*x^2*log(x)^4 + e^(2*(x^6 - 4*x^5*log(x) + 6*x^4*log(x 
)^2 - 4*x^3*log(x)^3 + x^2*log(x)^4)/log(x)^4)*log(x)^4)/log(x)^4))*e^(-2* 
(x^6 - 4*x^5*log(x) + 6*x^4*log(x)^2 - 4*x^3*log(x)^3 + x^2*log(x)^4)/log( 
x)^4)
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 60 vs. \(2 (27) = 54\).

Time = 1.14 (sec) , antiderivative size = 60, normalized size of antiderivative = 2.14 \[ \int \frac {3 \log ^5(x)+2 \log ^6(x)+e^{e^{\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}}+\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}} \left (-8 x^5+\left (24 x^4+12 x^5\right ) \log (x)+\left (-24 x^3-40 x^4\right ) \log ^2(x)+\left (8 x^2+48 x^3\right ) \log ^3(x)-24 x^2 \log ^4(x)+4 x \log ^5(x)\right )}{\log ^5(x)} \, dx=2 x \log {\left (x \right )} + x + e^{e^{\frac {2 x^{6} - 8 x^{5} \log {\left (x \right )} + 12 x^{4} \log {\left (x \right )}^{2} - 8 x^{3} \log {\left (x \right )}^{3} + 2 x^{2} \log {\left (x \right )}^{4}}{\log {\left (x \right )}^{4}}}} \] Input:

integrate(((4*x*ln(x)**5-24*x**2*ln(x)**4+(48*x**3+8*x**2)*ln(x)**3+(-40*x 
**4-24*x**3)*ln(x)**2+(12*x**5+24*x**4)*ln(x)-8*x**5)*exp((2*x**2*ln(x)**4 
-8*x**3*ln(x)**3+12*x**4*ln(x)**2-8*x**5*ln(x)+2*x**6)/ln(x)**4)*exp(exp(( 
2*x**2*ln(x)**4-8*x**3*ln(x)**3+12*x**4*ln(x)**2-8*x**5*ln(x)+2*x**6)/ln(x 
)**4))+2*ln(x)**6+3*ln(x)**5)/ln(x)**5,x)
 

Output:

2*x*log(x) + x + exp(exp((2*x**6 - 8*x**5*log(x) + 12*x**4*log(x)**2 - 8*x 
**3*log(x)**3 + 2*x**2*log(x)**4)/log(x)**4))
 

Maxima [A] (verification not implemented)

Time = 0.78 (sec) , antiderivative size = 51, normalized size of antiderivative = 1.82 \[ \int \frac {3 \log ^5(x)+2 \log ^6(x)+e^{e^{\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}}+\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}} \left (-8 x^5+\left (24 x^4+12 x^5\right ) \log (x)+\left (-24 x^3-40 x^4\right ) \log ^2(x)+\left (8 x^2+48 x^3\right ) \log ^3(x)-24 x^2 \log ^4(x)+4 x \log ^5(x)\right )}{\log ^5(x)} \, dx=2 \, x \log \left (x\right ) + x + e^{\left (e^{\left (2 \, x^{2} + \frac {2 \, x^{6}}{\log \left (x\right )^{4}} - \frac {8 \, x^{5}}{\log \left (x\right )^{3}} + \frac {12 \, x^{4}}{\log \left (x\right )^{2}} - \frac {8 \, x^{3}}{\log \left (x\right )}\right )}\right )} \] Input:

integrate(((4*x*log(x)^5-24*x^2*log(x)^4+(48*x^3+8*x^2)*log(x)^3+(-40*x^4- 
24*x^3)*log(x)^2+(12*x^5+24*x^4)*log(x)-8*x^5)*exp((2*x^2*log(x)^4-8*x^3*l 
og(x)^3+12*x^4*log(x)^2-8*x^5*log(x)+2*x^6)/log(x)^4)*exp(exp((2*x^2*log(x 
)^4-8*x^3*log(x)^3+12*x^4*log(x)^2-8*x^5*log(x)+2*x^6)/log(x)^4))+2*log(x) 
^6+3*log(x)^5)/log(x)^5,x, algorithm="maxima")
 

Output:

2*x*log(x) + x + e^(e^(2*x^2 + 2*x^6/log(x)^4 - 8*x^5/log(x)^3 + 12*x^4/lo 
g(x)^2 - 8*x^3/log(x)))
 

Giac [F]

\[ \int \frac {3 \log ^5(x)+2 \log ^6(x)+e^{e^{\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}}+\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}} \left (-8 x^5+\left (24 x^4+12 x^5\right ) \log (x)+\left (-24 x^3-40 x^4\right ) \log ^2(x)+\left (8 x^2+48 x^3\right ) \log ^3(x)-24 x^2 \log ^4(x)+4 x \log ^5(x)\right )}{\log ^5(x)} \, dx=\int { \frac {2 \, \log \left (x\right )^{6} + 3 \, \log \left (x\right )^{5} - 4 \, {\left (6 \, x^{2} \log \left (x\right )^{4} - x \log \left (x\right )^{5} + 2 \, x^{5} - 2 \, {\left (6 \, x^{3} + x^{2}\right )} \log \left (x\right )^{3} + 2 \, {\left (5 \, x^{4} + 3 \, x^{3}\right )} \log \left (x\right )^{2} - 3 \, {\left (x^{5} + 2 \, x^{4}\right )} \log \left (x\right )\right )} e^{\left (\frac {2 \, {\left (x^{6} - 4 \, x^{5} \log \left (x\right ) + 6 \, x^{4} \log \left (x\right )^{2} - 4 \, x^{3} \log \left (x\right )^{3} + x^{2} \log \left (x\right )^{4}\right )}}{\log \left (x\right )^{4}} + e^{\left (\frac {2 \, {\left (x^{6} - 4 \, x^{5} \log \left (x\right ) + 6 \, x^{4} \log \left (x\right )^{2} - 4 \, x^{3} \log \left (x\right )^{3} + x^{2} \log \left (x\right )^{4}\right )}}{\log \left (x\right )^{4}}\right )}\right )}}{\log \left (x\right )^{5}} \,d x } \] Input:

integrate(((4*x*log(x)^5-24*x^2*log(x)^4+(48*x^3+8*x^2)*log(x)^3+(-40*x^4- 
24*x^3)*log(x)^2+(12*x^5+24*x^4)*log(x)-8*x^5)*exp((2*x^2*log(x)^4-8*x^3*l 
og(x)^3+12*x^4*log(x)^2-8*x^5*log(x)+2*x^6)/log(x)^4)*exp(exp((2*x^2*log(x 
)^4-8*x^3*log(x)^3+12*x^4*log(x)^2-8*x^5*log(x)+2*x^6)/log(x)^4))+2*log(x) 
^6+3*log(x)^5)/log(x)^5,x, algorithm="giac")
 

Output:

undef
 

Mupad [B] (verification not implemented)

Time = 2.92 (sec) , antiderivative size = 55, normalized size of antiderivative = 1.96 \[ \int \frac {3 \log ^5(x)+2 \log ^6(x)+e^{e^{\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}}+\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}} \left (-8 x^5+\left (24 x^4+12 x^5\right ) \log (x)+\left (-24 x^3-40 x^4\right ) \log ^2(x)+\left (8 x^2+48 x^3\right ) \log ^3(x)-24 x^2 \log ^4(x)+4 x \log ^5(x)\right )}{\log ^5(x)} \, dx=x+{\mathrm {e}}^{{\mathrm {e}}^{2\,x^2}\,{\mathrm {e}}^{-\frac {8\,x^3}{\ln \left (x\right )}}\,{\mathrm {e}}^{\frac {2\,x^6}{{\ln \left (x\right )}^4}}\,{\mathrm {e}}^{-\frac {8\,x^5}{{\ln \left (x\right )}^3}}\,{\mathrm {e}}^{\frac {12\,x^4}{{\ln \left (x\right )}^2}}}+2\,x\,\ln \left (x\right ) \] Input:

int((3*log(x)^5 + 2*log(x)^6 + exp((2*x^2*log(x)^4 - 8*x^5*log(x) - 8*x^3* 
log(x)^3 + 12*x^4*log(x)^2 + 2*x^6)/log(x)^4)*exp(exp((2*x^2*log(x)^4 - 8* 
x^5*log(x) - 8*x^3*log(x)^3 + 12*x^4*log(x)^2 + 2*x^6)/log(x)^4))*(log(x)* 
(24*x^4 + 12*x^5) + 4*x*log(x)^5 + log(x)^3*(8*x^2 + 48*x^3) - log(x)^2*(2 
4*x^3 + 40*x^4) - 24*x^2*log(x)^4 - 8*x^5))/log(x)^5,x)
 

Output:

x + exp(exp(2*x^2)*exp(-(8*x^3)/log(x))*exp((2*x^6)/log(x)^4)*exp(-(8*x^5) 
/log(x)^3)*exp((12*x^4)/log(x)^2)) + 2*x*log(x)
 

Reduce [F]

\[ \int \frac {3 \log ^5(x)+2 \log ^6(x)+e^{e^{\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}}+\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}} \left (-8 x^5+\left (24 x^4+12 x^5\right ) \log (x)+\left (-24 x^3-40 x^4\right ) \log ^2(x)+\left (8 x^2+48 x^3\right ) \log ^3(x)-24 x^2 \log ^4(x)+4 x \log ^5(x)\right )}{\log ^5(x)} \, dx=\text {too large to display} \] Input:

int(((4*x*log(x)^5-24*x^2*log(x)^4+(48*x^3+8*x^2)*log(x)^3+(-40*x^4-24*x^3 
)*log(x)^2+(12*x^5+24*x^4)*log(x)-8*x^5)*exp((2*x^2*log(x)^4-8*x^3*log(x)^ 
3+12*x^4*log(x)^2-8*x^5*log(x)+2*x^6)/log(x)^4)*exp(exp((2*x^2*log(x)^4-8* 
x^3*log(x)^3+12*x^4*log(x)^2-8*x^5*log(x)+2*x^6)/log(x)^4))+2*log(x)^6+3*l 
og(x)^5)/log(x)^5,x)
 

Output:

 - 8*int((e**((e**((2*log(x)**4*x**2 + 12*log(x)**2*x**4 + 2*x**6)/log(x)* 
*4)*log(x)**4 + 2*e**((8*log(x)**2*x**3 + 8*x**5)/log(x)**3)*log(x)**4*x** 
2 + 12*e**((8*log(x)**2*x**3 + 8*x**5)/log(x)**3)*log(x)**2*x**4 + 2*e**(( 
8*log(x)**2*x**3 + 8*x**5)/log(x)**3)*x**6)/(e**((8*log(x)**2*x**3 + 8*x** 
5)/log(x)**3)*log(x)**4))*x**5)/(e**((8*log(x)**2*x**3 + 8*x**5)/log(x)**3 
)*log(x)**5),x) + 12*int((e**((e**((2*log(x)**4*x**2 + 12*log(x)**2*x**4 + 
 2*x**6)/log(x)**4)*log(x)**4 + 2*e**((8*log(x)**2*x**3 + 8*x**5)/log(x)** 
3)*log(x)**4*x**2 + 12*e**((8*log(x)**2*x**3 + 8*x**5)/log(x)**3)*log(x)** 
2*x**4 + 2*e**((8*log(x)**2*x**3 + 8*x**5)/log(x)**3)*x**6)/(e**((8*log(x) 
**2*x**3 + 8*x**5)/log(x)**3)*log(x)**4))*x**5)/(e**((8*log(x)**2*x**3 + 8 
*x**5)/log(x)**3)*log(x)**4),x) + 24*int((e**((e**((2*log(x)**4*x**2 + 12* 
log(x)**2*x**4 + 2*x**6)/log(x)**4)*log(x)**4 + 2*e**((8*log(x)**2*x**3 + 
8*x**5)/log(x)**3)*log(x)**4*x**2 + 12*e**((8*log(x)**2*x**3 + 8*x**5)/log 
(x)**3)*log(x)**2*x**4 + 2*e**((8*log(x)**2*x**3 + 8*x**5)/log(x)**3)*x**6 
)/(e**((8*log(x)**2*x**3 + 8*x**5)/log(x)**3)*log(x)**4))*x**4)/(e**((8*lo 
g(x)**2*x**3 + 8*x**5)/log(x)**3)*log(x)**4),x) - 40*int((e**((e**((2*log( 
x)**4*x**2 + 12*log(x)**2*x**4 + 2*x**6)/log(x)**4)*log(x)**4 + 2*e**((8*l 
og(x)**2*x**3 + 8*x**5)/log(x)**3)*log(x)**4*x**2 + 12*e**((8*log(x)**2*x* 
*3 + 8*x**5)/log(x)**3)*log(x)**2*x**4 + 2*e**((8*log(x)**2*x**3 + 8*x**5) 
/log(x)**3)*x**6)/(e**((8*log(x)**2*x**3 + 8*x**5)/log(x)**3)*log(x)**4...