\(\int \frac {10+13 x+7 x^2+e (-10-8 x+2 x^2-2 x^3)+(-2-3 x-2 x^2+e (2+2 x)) \log (4)+(7 x+4 x^2+x^3+e (-2 x-4 x^2)-x \log (4)) \log (2 x)}{200 x-80 x^2-72 x^3+16 x^4+8 x^5+(-80 x+16 x^2+16 x^3) \log (4)+8 x \log ^2(4)} \, dx\) [1215]

Optimal result
Mathematica [A] (verified)
Rubi [F]
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 131, antiderivative size = 28 \[ \int \frac {10+13 x+7 x^2+e \left (-10-8 x+2 x^2-2 x^3\right )+\left (-2-3 x-2 x^2+e (2+2 x)\right ) \log (4)+\left (7 x+4 x^2+x^3+e \left (-2 x-4 x^2\right )-x \log (4)\right ) \log (2 x)}{200 x-80 x^2-72 x^3+16 x^4+8 x^5+\left (-80 x+16 x^2+16 x^3\right ) \log (4)+8 x \log ^2(4)} \, dx=\frac {\left (-1+e-\frac {x}{2}\right ) (x+\log (2 x))}{4 \left (-5+x+x^2+\log (4)\right )} \] Output:

(ln(2*x)+x)*(1/4*exp(1)-1/4-1/8*x)/(x^2+2*ln(2)+x-5)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.36 \[ \int \frac {10+13 x+7 x^2+e \left (-10-8 x+2 x^2-2 x^3\right )+\left (-2-3 x-2 x^2+e (2+2 x)\right ) \log (4)+\left (7 x+4 x^2+x^3+e \left (-2 x-4 x^2\right )-x \log (4)\right ) \log (2 x)}{200 x-80 x^2-72 x^3+16 x^4+8 x^5+\left (-80 x+16 x^2+16 x^3\right ) \log (4)+8 x \log ^2(4)} \, dx=\frac {-5+(-1+2 e) x+\log (4)+(-2+2 e-x) \log (2 x)}{8 \left (-5+x+x^2+\log (4)\right )} \] Input:

Integrate[(10 + 13*x + 7*x^2 + E*(-10 - 8*x + 2*x^2 - 2*x^3) + (-2 - 3*x - 
 2*x^2 + E*(2 + 2*x))*Log[4] + (7*x + 4*x^2 + x^3 + E*(-2*x - 4*x^2) - x*L 
og[4])*Log[2*x])/(200*x - 80*x^2 - 72*x^3 + 16*x^4 + 8*x^5 + (-80*x + 16*x 
^2 + 16*x^3)*Log[4] + 8*x*Log[4]^2),x]
 

Output:

(-5 + (-1 + 2*E)*x + Log[4] + (-2 + 2*E - x)*Log[2*x])/(8*(-5 + x + x^2 + 
Log[4]))
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {7 x^2+\left (-2 x^2-3 x+e (2 x+2)-2\right ) \log (4)+e \left (-2 x^3+2 x^2-8 x-10\right )+\left (x^3+4 x^2+e \left (-4 x^2-2 x\right )+7 x-x \log (4)\right ) \log (2 x)+13 x+10}{8 x^5+16 x^4-72 x^3-80 x^2+\left (16 x^3+16 x^2-80 x\right ) \log (4)+200 x+8 x \log ^2(4)} \, dx\)

\(\Big \downarrow \) 6

\(\displaystyle \int \frac {7 x^2+\left (-2 x^2-3 x+e (2 x+2)-2\right ) \log (4)+e \left (-2 x^3+2 x^2-8 x-10\right )+\left (x^3+4 x^2+e \left (-4 x^2-2 x\right )+7 x-x \log (4)\right ) \log (2 x)+13 x+10}{8 x^5+16 x^4-72 x^3-80 x^2+\left (16 x^3+16 x^2-80 x\right ) \log (4)+x \left (200+8 \log ^2(4)\right )}dx\)

\(\Big \downarrow \) 2026

\(\displaystyle \int \frac {7 x^2+\left (-2 x^2-3 x+e (2 x+2)-2\right ) \log (4)+e \left (-2 x^3+2 x^2-8 x-10\right )+\left (x^3+4 x^2+e \left (-4 x^2-2 x\right )+7 x-x \log (4)\right ) \log (2 x)+13 x+10}{x \left (8 x^4+16 x^3-8 x^2 (9-\log (16))-16 x (5-\log (4))+8 (5-\log (4))^2\right )}dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (\frac {7 x}{8 \left (x^4+2 x^3-x^2 (9-\log (16))-2 x (5-\log (4))+(\log (4)-5)^2\right )}+\frac {\left (x^2+4 (1-e) x-2 e+7-\log (4)\right ) \log (2 x)}{8 \left (x^4+2 x^3-x^2 (9-\log (16))-2 x (5-\log (4))+(\log (4)-5)^2\right )}+\frac {13}{8 \left (x^4+2 x^3-x^2 (9-\log (16))-2 x (5-\log (4))+(\log (4)-5)^2\right )}+\frac {e \left (-x^3+x^2-4 x-5\right )}{4 x \left (x^4+2 x^3-x^2 (9-\log (16))-2 x (5-\log (4))+(\log (4)-5)^2\right )}+\frac {\left (-2 x^2-(3-2 e) x-2 (1-e)\right ) \log (4)}{8 x \left (x^4+2 x^3-x^2 (9-\log (16))-2 x (5-\log (4))+(\log (4)-5)^2\right )}+\frac {5}{4 x \left (x^4+2 x^3-x^2 (9-\log (16))-2 x (5-\log (4))+(\log (4)-5)^2\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {4 e (2 x+1)}{\left (-(2 x+1)^2-4 \log (4)+21\right ) (21-\log (256))}+\frac {13 (2 x+1)}{2 \left (-(2 x+1)^2-4 \log (4)+21\right ) (21-\log (256))}-\frac {(3-2 e) \log (4) (2 x+1)}{2 \left (-(2 x+1)^2-4 \log (4)+21\right ) (21-\log (256))}-\frac {\log (4) (-x-\log (16)+10)}{\left (-(2 x+1)^2-4 \log (4)+21\right ) (21-2 \log (16))}-\frac {(1-e) \log (4) \log (x)}{4 (5-\log (4))^2}-\frac {5 e \log (x)}{4 (5-\log (4))^2}+\frac {5 \log (x)}{4 (5-\log (4))^2}+\frac {(1-e) \log (4) \log \left (-x^2-x-\log (4)+5\right )}{8 (5-\log (4))^2}+\frac {5 e \log \left (-x^2-x-\log (4)+5\right )}{8 (5-\log (4))^2}-\frac {5 \log \left (-x^2-x-\log (4)+5\right )}{8 (5-\log (4))^2}+\frac {1}{8} (7-2 (e+\log (2))) \int \frac {\log (2 x)}{x^4+2 x^3-(9-\log (16)) x^2-2 (5-\log (4)) x+(-5+\log (4))^2}dx+\frac {1}{2} (1-e) \int \frac {x \log (2 x)}{x^4+2 x^3-(9-\log (16)) x^2-2 (5-\log (4)) x+(-5+\log (4))^2}dx+\frac {1}{8} \int \frac {x^2 \log (2 x)}{x^4+2 x^3-(9-\log (16)) x^2-2 (5-\log (4)) x+(-5+\log (4))^2}dx-\frac {(1-e) \text {arctanh}\left (\frac {2 x+1}{\sqrt {21-4 \log (4)}}\right ) \log (4) (31-\log (4096))}{4 (21-4 \log (4))^{3/2} (5-\log (4))^2}-\frac {5 e \text {arctanh}\left (\frac {2 x+1}{\sqrt {21-4 \log (4)}}\right ) (31-\log (4096))}{4 (21-4 \log (4))^{3/2} (5-\log (4))^2}+\frac {5 \text {arctanh}\left (\frac {2 x+1}{\sqrt {21-4 \log (4)}}\right ) (31-\log (4096))}{4 (21-4 \log (4))^{3/2} (5-\log (4))^2}+\frac {e (-x-\log (16)+10)}{\left (-(2 x+1)^2-4 \log (4)+21\right ) (21-\log (256))}+\frac {7 (-x-\log (16)+10)}{2 \left (-(2 x+1)^2-4 \log (4)+21\right ) (21-\log (256))}-\frac {5 e (x-\log (16)+11)}{4 (5-\log (4)) \left (-x^2-x-\log (4)+5\right ) (21-\log (256))}+\frac {5 (x-\log (16)+11)}{4 (5-\log (4)) \left (-x^2-x-\log (4)+5\right ) (21-\log (256))}-\frac {(1-e) \log (4) (x-\log (16)+11)}{4 (5-\log (4)) \left (-x^2-x-\log (4)+5\right ) (21-\log (256))}-\frac {9 e \text {arctanh}\left (\frac {2 x+1}{\sqrt {21-4 \log (4)}}\right )}{2 (21-\log (256))^{3/2}}+\frac {19 \text {arctanh}\left (\frac {2 x+1}{\sqrt {21-4 \log (4)}}\right )}{4 (21-\log (256))^{3/2}}-\frac {(3-2 e) \text {arctanh}\left (\frac {2 x+1}{\sqrt {21-4 \log (4)}}\right ) \log (4)}{2 (21-\log (256))^{3/2}}+\frac {\text {arctanh}\left (\frac {2 x+1}{\sqrt {21-4 \log (4)}}\right ) \log (4)}{2 (21-\log (256))^{3/2}}+\frac {e (-((11-\log (16)) (2 x+1))-4 \log (4)+21)}{2 \left (-(2 x+1)^2-4 \log (4)+21\right ) (21-2 \log (16))}+\frac {e \text {arctanh}\left (\frac {2 x+1}{\sqrt {21-4 \log (4)}}\right ) (5-\log (4))}{(21-4 \log (4))^{3/2}}\)

Input:

Int[(10 + 13*x + 7*x^2 + E*(-10 - 8*x + 2*x^2 - 2*x^3) + (-2 - 3*x - 2*x^2 
 + E*(2 + 2*x))*Log[4] + (7*x + 4*x^2 + x^3 + E*(-2*x - 4*x^2) - x*Log[4]) 
*Log[2*x])/(200*x - 80*x^2 - 72*x^3 + 16*x^4 + 8*x^5 + (-80*x + 16*x^2 + 1 
6*x^3)*Log[4] + 8*x*Log[4]^2),x]
 

Output:

$Aborted
 
Maple [A] (verified)

Time = 6.46 (sec) , antiderivative size = 46, normalized size of antiderivative = 1.64

method result size
norman \(\frac {\left (\frac {{\mathrm e}}{4}-\frac {1}{8}\right ) x +\left (\frac {{\mathrm e}}{4}-\frac {1}{4}\right ) \ln \left (2 x \right )-\frac {x \ln \left (2 x \right )}{8}-\frac {5}{8}+\frac {\ln \left (2\right )}{4}}{x^{2}+2 \ln \left (2\right )+x -5}\) \(46\)
parallelrisch \(\frac {2 \,{\mathrm e} \ln \left (2 x \right )-x \ln \left (2 x \right )+2 x \,{\mathrm e}-2 \ln \left (2 x \right )+2 \ln \left (2\right )-x -5}{8 x^{2}+16 \ln \left (2\right )+8 x -40}\) \(50\)
risch \(\frac {\left (-x +2 \,{\mathrm e}-2\right ) \ln \left (2 x \right )}{8 x^{2}+16 \ln \left (2\right )+8 x -40}+\frac {2 x \,{\mathrm e}+2 \ln \left (2\right )-x -5}{8 x^{2}+16 \ln \left (2\right )+8 x -40}\) \(57\)
parts \(\text {Expression too large to display}\) \(813\)
derivativedivides \(\text {Expression too large to display}\) \(817\)
default \(\text {Expression too large to display}\) \(817\)

Input:

int(((-2*x*ln(2)+(-4*x^2-2*x)*exp(1)+x^3+4*x^2+7*x)*ln(2*x)+2*((2+2*x)*exp 
(1)-2*x^2-3*x-2)*ln(2)+(-2*x^3+2*x^2-8*x-10)*exp(1)+7*x^2+13*x+10)/(32*x*l 
n(2)^2+2*(16*x^3+16*x^2-80*x)*ln(2)+8*x^5+16*x^4-72*x^3-80*x^2+200*x),x,me 
thod=_RETURNVERBOSE)
 

Output:

((1/4*exp(1)-1/8)*x+(1/4*exp(1)-1/4)*ln(2*x)-1/8*x*ln(2*x)-5/8+1/4*ln(2))/ 
(x^2+2*ln(2)+x-5)
                                                                                    
                                                                                    
 

Fricas [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 41, normalized size of antiderivative = 1.46 \[ \int \frac {10+13 x+7 x^2+e \left (-10-8 x+2 x^2-2 x^3\right )+\left (-2-3 x-2 x^2+e (2+2 x)\right ) \log (4)+\left (7 x+4 x^2+x^3+e \left (-2 x-4 x^2\right )-x \log (4)\right ) \log (2 x)}{200 x-80 x^2-72 x^3+16 x^4+8 x^5+\left (-80 x+16 x^2+16 x^3\right ) \log (4)+8 x \log ^2(4)} \, dx=\frac {2 \, x e - {\left (x - 2 \, e + 2\right )} \log \left (2 \, x\right ) - x + 2 \, \log \left (2\right ) - 5}{8 \, {\left (x^{2} + x + 2 \, \log \left (2\right ) - 5\right )}} \] Input:

integrate(((-2*x*log(2)+(-4*x^2-2*x)*exp(1)+x^3+4*x^2+7*x)*log(2*x)+2*((2+ 
2*x)*exp(1)-2*x^2-3*x-2)*log(2)+(-2*x^3+2*x^2-8*x-10)*exp(1)+7*x^2+13*x+10 
)/(32*x*log(2)^2+2*(16*x^3+16*x^2-80*x)*log(2)+8*x^5+16*x^4-72*x^3-80*x^2+ 
200*x),x, algorithm="fricas")
 

Output:

1/8*(2*x*e - (x - 2*e + 2)*log(2*x) - x + 2*log(2) - 5)/(x^2 + x + 2*log(2 
) - 5)
 

Sympy [A] (verification not implemented)

Time = 1.16 (sec) , antiderivative size = 58, normalized size of antiderivative = 2.07 \[ \int \frac {10+13 x+7 x^2+e \left (-10-8 x+2 x^2-2 x^3\right )+\left (-2-3 x-2 x^2+e (2+2 x)\right ) \log (4)+\left (7 x+4 x^2+x^3+e \left (-2 x-4 x^2\right )-x \log (4)\right ) \log (2 x)}{200 x-80 x^2-72 x^3+16 x^4+8 x^5+\left (-80 x+16 x^2+16 x^3\right ) \log (4)+8 x \log ^2(4)} \, dx=\frac {\left (- x - 2 + 2 e\right ) \log {\left (2 x \right )}}{8 x^{2} + 8 x - 40 + 16 \log {\left (2 \right )}} + \frac {x \left (-1 + 2 e\right ) - 5 + 2 \log {\left (2 \right )}}{8 x^{2} + 8 x - 40 + 16 \log {\left (2 \right )}} \] Input:

integrate(((-2*x*ln(2)+(-4*x**2-2*x)*exp(1)+x**3+4*x**2+7*x)*ln(2*x)+2*((2 
+2*x)*exp(1)-2*x**2-3*x-2)*ln(2)+(-2*x**3+2*x**2-8*x-10)*exp(1)+7*x**2+13* 
x+10)/(32*x*ln(2)**2+2*(16*x**3+16*x**2-80*x)*ln(2)+8*x**5+16*x**4-72*x**3 
-80*x**2+200*x),x)
 

Output:

(-x - 2 + 2*E)*log(2*x)/(8*x**2 + 8*x - 40 + 16*log(2)) + (x*(-1 + 2*E) - 
5 + 2*log(2))/(8*x**2 + 8*x - 40 + 16*log(2))
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1589 vs. \(2 (27) = 54\).

Time = 0.18 (sec) , antiderivative size = 1589, normalized size of antiderivative = 56.75 \[ \int \frac {10+13 x+7 x^2+e \left (-10-8 x+2 x^2-2 x^3\right )+\left (-2-3 x-2 x^2+e (2+2 x)\right ) \log (4)+\left (7 x+4 x^2+x^3+e \left (-2 x-4 x^2\right )-x \log (4)\right ) \log (2 x)}{200 x-80 x^2-72 x^3+16 x^4+8 x^5+\left (-80 x+16 x^2+16 x^3\right ) \log (4)+8 x \log ^2(4)} \, dx=\text {Too large to display} \] Input:

integrate(((-2*x*log(2)+(-4*x^2-2*x)*exp(1)+x^3+4*x^2+7*x)*log(2*x)+2*((2+ 
2*x)*exp(1)-2*x^2-3*x-2)*log(2)+(-2*x^3+2*x^2-8*x-10)*exp(1)+7*x^2+13*x+10 
)/(32*x*log(2)^2+2*(16*x^3+16*x^2-80*x)*log(2)+8*x^5+16*x^4-72*x^3-80*x^2+ 
200*x),x, algorithm="maxima")
 

Output:

-1/4*((12*log(2) - 31)*log((2*x - sqrt(-8*log(2) + 21) + 1)/(2*x + sqrt(-8 
*log(2) + 21) + 1))/((32*log(2)^3 - 244*log(2)^2 + 620*log(2) - 525)*sqrt( 
-8*log(2) + 21)) + 2*(x - 4*log(2) + 11)/((16*log(2)^2 - 82*log(2) + 105)* 
x^2 + 32*log(2)^3 + (16*log(2)^2 - 82*log(2) + 105)*x - 244*log(2)^2 + 620 
*log(2) - 525) + log(x^2 + x + 2*log(2) - 5)/(4*log(2)^2 - 20*log(2) + 25) 
 - 2*log(x)/(4*log(2)^2 - 20*log(2) + 25))*e*log(2) + 1/2*((2*x + 1)/(x^2* 
(8*log(2) - 21) + x*(8*log(2) - 21) + 16*log(2)^2 - 82*log(2) + 105) + 2*l 
og((2*x - sqrt(-8*log(2) + 21) + 1)/(2*x + sqrt(-8*log(2) + 21) + 1))/((8* 
log(2) - 21)*sqrt(-8*log(2) + 21)))*e*log(2) + 5/8*((12*log(2) - 31)*log(( 
2*x - sqrt(-8*log(2) + 21) + 1)/(2*x + sqrt(-8*log(2) + 21) + 1))/((32*log 
(2)^3 - 244*log(2)^2 + 620*log(2) - 525)*sqrt(-8*log(2) + 21)) + 2*(x - 4* 
log(2) + 11)/((16*log(2)^2 - 82*log(2) + 105)*x^2 + 32*log(2)^3 + (16*log( 
2)^2 - 82*log(2) + 105)*x - 244*log(2)^2 + 620*log(2) - 525) + log(x^2 + x 
 + 2*log(2) - 5)/(4*log(2)^2 - 20*log(2) + 25) - 2*log(x)/(4*log(2)^2 - 20 
*log(2) + 25))*e - 1/4*(2*(2*log(2) - 5)*log((2*x - sqrt(-8*log(2) + 21) + 
 1)/(2*x + sqrt(-8*log(2) + 21) + 1))/((8*log(2) - 21)*sqrt(-8*log(2) + 21 
)) - (x*(4*log(2) - 11) - 2*log(2) + 5)/(x^2*(8*log(2) - 21) + x*(8*log(2) 
 - 21) + 16*log(2)^2 - 82*log(2) + 105))*e - ((2*x + 1)/(x^2*(8*log(2) - 2 
1) + x*(8*log(2) - 21) + 16*log(2)^2 - 82*log(2) + 105) + 2*log((2*x - sqr 
t(-8*log(2) + 21) + 1)/(2*x + sqrt(-8*log(2) + 21) + 1))/((8*log(2) - 2...
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 50, normalized size of antiderivative = 1.79 \[ \int \frac {10+13 x+7 x^2+e \left (-10-8 x+2 x^2-2 x^3\right )+\left (-2-3 x-2 x^2+e (2+2 x)\right ) \log (4)+\left (7 x+4 x^2+x^3+e \left (-2 x-4 x^2\right )-x \log (4)\right ) \log (2 x)}{200 x-80 x^2-72 x^3+16 x^4+8 x^5+\left (-80 x+16 x^2+16 x^3\right ) \log (4)+8 x \log ^2(4)} \, dx=\frac {2 \, x e - x \log \left (2\right ) + 2 \, e \log \left (2\right ) - x \log \left (x\right ) + 2 \, e \log \left (x\right ) - x - 2 \, \log \left (x\right ) - 5}{8 \, {\left (x^{2} + x + 2 \, \log \left (2\right ) - 5\right )}} \] Input:

integrate(((-2*x*log(2)+(-4*x^2-2*x)*exp(1)+x^3+4*x^2+7*x)*log(2*x)+2*((2+ 
2*x)*exp(1)-2*x^2-3*x-2)*log(2)+(-2*x^3+2*x^2-8*x-10)*exp(1)+7*x^2+13*x+10 
)/(32*x*log(2)^2+2*(16*x^3+16*x^2-80*x)*log(2)+8*x^5+16*x^4-72*x^3-80*x^2+ 
200*x),x, algorithm="giac")
 

Output:

1/8*(2*x*e - x*log(2) + 2*e*log(2) - x*log(x) + 2*e*log(x) - x - 2*log(x) 
- 5)/(x^2 + x + 2*log(2) - 5)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {10+13 x+7 x^2+e \left (-10-8 x+2 x^2-2 x^3\right )+\left (-2-3 x-2 x^2+e (2+2 x)\right ) \log (4)+\left (7 x+4 x^2+x^3+e \left (-2 x-4 x^2\right )-x \log (4)\right ) \log (2 x)}{200 x-80 x^2-72 x^3+16 x^4+8 x^5+\left (-80 x+16 x^2+16 x^3\right ) \log (4)+8 x \log ^2(4)} \, dx=\int \frac {13\,x-2\,\ln \left (2\right )\,\left (3\,x+2\,x^2-\mathrm {e}\,\left (2\,x+2\right )+2\right )+\ln \left (2\,x\right )\,\left (7\,x-\mathrm {e}\,\left (4\,x^2+2\,x\right )-2\,x\,\ln \left (2\right )+4\,x^2+x^3\right )-\mathrm {e}\,\left (2\,x^3-2\,x^2+8\,x+10\right )+7\,x^2+10}{200\,x+2\,\ln \left (2\right )\,\left (16\,x^3+16\,x^2-80\,x\right )+32\,x\,{\ln \left (2\right )}^2-80\,x^2-72\,x^3+16\,x^4+8\,x^5} \,d x \] Input:

int((13*x - 2*log(2)*(3*x + 2*x^2 - exp(1)*(2*x + 2) + 2) + log(2*x)*(7*x 
- exp(1)*(2*x + 4*x^2) - 2*x*log(2) + 4*x^2 + x^3) - exp(1)*(8*x - 2*x^2 + 
 2*x^3 + 10) + 7*x^2 + 10)/(200*x + 2*log(2)*(16*x^2 - 80*x + 16*x^3) + 32 
*x*log(2)^2 - 80*x^2 - 72*x^3 + 16*x^4 + 8*x^5),x)
 

Output:

int((13*x - 2*log(2)*(3*x + 2*x^2 - exp(1)*(2*x + 2) + 2) + log(2*x)*(7*x 
- exp(1)*(2*x + 4*x^2) - 2*x*log(2) + 4*x^2 + x^3) - exp(1)*(8*x - 2*x^2 + 
 2*x^3 + 10) + 7*x^2 + 10)/(200*x + 2*log(2)*(16*x^2 - 80*x + 16*x^3) + 32 
*x*log(2)^2 - 80*x^2 - 72*x^3 + 16*x^4 + 8*x^5), x)
 

Reduce [B] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 91, normalized size of antiderivative = 3.25 \[ \int \frac {10+13 x+7 x^2+e \left (-10-8 x+2 x^2-2 x^3\right )+\left (-2-3 x-2 x^2+e (2+2 x)\right ) \log (4)+\left (7 x+4 x^2+x^3+e \left (-2 x-4 x^2\right )-x \log (4)\right ) \log (2 x)}{200 x-80 x^2-72 x^3+16 x^4+8 x^5+\left (-80 x+16 x^2+16 x^3\right ) \log (4)+8 x \log ^2(4)} \, dx=\frac {2 \,\mathrm {log}\left (2 x \right ) \mathrm {log}\left (2\right )+2 \,\mathrm {log}\left (2 x \right ) e +\mathrm {log}\left (2 x \right ) x^{2}-7 \,\mathrm {log}\left (2 x \right )-2 \,\mathrm {log}\left (x \right ) \mathrm {log}\left (2\right )-\mathrm {log}\left (x \right ) x^{2}-\mathrm {log}\left (x \right ) x +5 \,\mathrm {log}\left (x \right )-4 \,\mathrm {log}\left (2\right ) e +4 \,\mathrm {log}\left (2\right )-2 e \,x^{2}+10 e +x^{2}-10}{16 \,\mathrm {log}\left (2\right )+8 x^{2}+8 x -40} \] Input:

int(((-2*x*log(2)+(-4*x^2-2*x)*exp(1)+x^3+4*x^2+7*x)*log(2*x)+2*((2+2*x)*e 
xp(1)-2*x^2-3*x-2)*log(2)+(-2*x^3+2*x^2-8*x-10)*exp(1)+7*x^2+13*x+10)/(32* 
x*log(2)^2+2*(16*x^3+16*x^2-80*x)*log(2)+8*x^5+16*x^4-72*x^3-80*x^2+200*x) 
,x)
 

Output:

(2*log(2*x)*log(2) + 2*log(2*x)*e + log(2*x)*x**2 - 7*log(2*x) - 2*log(x)* 
log(2) - log(x)*x**2 - log(x)*x + 5*log(x) - 4*log(2)*e + 4*log(2) - 2*e*x 
**2 + 10*e + x**2 - 10)/(8*(2*log(2) + x**2 + x - 5))