\(\int \frac {512 x^2-128 x^3+(1536 x^2-128 x^3) \log (x)+\frac {e^{5-x} (32 x^2+(160 x^2+64 x^3) \log (x))}{x}}{4096+\frac {e^{15-3 x}}{x^3}+\frac {e^{10-2 x} (48-12 x)}{x^2}-3072 x+768 x^2-64 x^3+\frac {e^{5-x} (768-384 x+48 x^2)}{x}} \, dx\) [1754]

Optimal result
Mathematica [A] (verified)
Rubi [F]
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 122, antiderivative size = 28 \[ \int \frac {512 x^2-128 x^3+\left (1536 x^2-128 x^3\right ) \log (x)+\frac {e^{5-x} \left (32 x^2+\left (160 x^2+64 x^3\right ) \log (x)\right )}{x}}{4096+\frac {e^{15-3 x}}{x^3}+\frac {e^{10-2 x} (48-12 x)}{x^2}-3072 x+768 x^2-64 x^3+\frac {e^{5-x} \left (768-384 x+48 x^2\right )}{x}} \, dx=\frac {2 x^3 \log (x)}{\left (4+\frac {e^{5-x}}{4 x}-x\right )^2} \] Output:

2*ln(x)*x^3/(4-x+1/4*exp(5-ln(x)-x))^2
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 5.07 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.96 \[ \int \frac {512 x^2-128 x^3+\left (1536 x^2-128 x^3\right ) \log (x)+\frac {e^{5-x} \left (32 x^2+\left (160 x^2+64 x^3\right ) \log (x)\right )}{x}}{4096+\frac {e^{15-3 x}}{x^3}+\frac {e^{10-2 x} (48-12 x)}{x^2}-3072 x+768 x^2-64 x^3+\frac {e^{5-x} \left (768-384 x+48 x^2\right )}{x}} \, dx=\frac {32 e^{2 x} x^5 \log (x)}{\left (e^5-4 e^x (-4+x) x\right )^2} \] Input:

Integrate[(512*x^2 - 128*x^3 + (1536*x^2 - 128*x^3)*Log[x] + (E^(5 - x)*(3 
2*x^2 + (160*x^2 + 64*x^3)*Log[x]))/x)/(4096 + E^(15 - 3*x)/x^3 + (E^(10 - 
 2*x)*(48 - 12*x))/x^2 - 3072*x + 768*x^2 - 64*x^3 + (E^(5 - x)*(768 - 384 
*x + 48*x^2))/x),x]
 

Output:

(32*E^(2*x)*x^5*Log[x])/(E^5 - 4*E^x*(-4 + x)*x)^2
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {-128 x^3+512 x^2+\left (1536 x^2-128 x^3\right ) \log (x)+\frac {e^{5-x} \left (32 x^2+\left (64 x^3+160 x^2\right ) \log (x)\right )}{x}}{-64 x^3+\frac {e^{15-3 x}}{x^3}+768 x^2+\frac {e^{5-x} \left (48 x^2-384 x+768\right )}{x}+\frac {e^{10-2 x} (48-12 x)}{x^2}-3072 x+4096} \, dx\)

\(\Big \downarrow \) 7239

\(\displaystyle \int \frac {32 e^{2 x} x^4 \left (-4 e^x (x-4) x-4 e^x (x-12) x \log (x)+e^5 (2 x+5) \log (x)+e^5\right )}{\left (e^5-4 e^x (x-4) x\right )^3}dx\)

\(\Big \downarrow \) 27

\(\displaystyle 32 \int \frac {e^{2 x} x^4 \left (4 e^x (4-x) x+4 e^x (12-x) \log (x) x+e^5 (2 x+5) \log (x)+e^5\right )}{\left (4 e^x (4-x) x+e^5\right )^3}dx\)

\(\Big \downarrow \) 7293

\(\displaystyle 32 \int \left (\frac {2 e^{2 x+5} \left (x^2-2 x-4\right ) \log (x) x^4}{(x-4) \left (-4 e^x x^2+16 e^x x+e^5\right )^3}+\frac {e^{2 x} (\log (x) x+x-12 \log (x)-4) x^4}{(x-4) \left (4 e^x x^2-16 e^x x-e^5\right )^2}\right )dx\)

\(\Big \downarrow \) 7293

\(\displaystyle 32 \int \left (\frac {e^{2 x} x^4 (\log (x) x+x-12 \log (x)-4)}{(x-4) \left (4 e^x x^2-16 e^x x-e^5\right )^2}-\frac {2 e^{2 x+5} x^4 \left (x^2-2 x-4\right ) \log (x)}{(x-4) \left (4 e^x x^2-16 e^x x-e^5\right )^3}\right )dx\)

\(\Big \downarrow \) 7299

\(\displaystyle 32 \int \left (\frac {e^{2 x} x^4 (\log (x) x+x-12 \log (x)-4)}{(x-4) \left (4 e^x x^2-16 e^x x-e^5\right )^2}-\frac {2 e^{2 x+5} x^4 \left (x^2-2 x-4\right ) \log (x)}{(x-4) \left (4 e^x x^2-16 e^x x-e^5\right )^3}\right )dx\)

Input:

Int[(512*x^2 - 128*x^3 + (1536*x^2 - 128*x^3)*Log[x] + (E^(5 - x)*(32*x^2 
+ (160*x^2 + 64*x^3)*Log[x]))/x)/(4096 + E^(15 - 3*x)/x^3 + (E^(10 - 2*x)* 
(48 - 12*x))/x^2 - 3072*x + 768*x^2 - 64*x^3 + (E^(5 - x)*(768 - 384*x + 4 
8*x^2))/x),x]
 

Output:

$Aborted
 
Maple [A] (verified)

Time = 0.46 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.93

method result size
risch \(\frac {32 x^{3} \ln \left (x \right )}{\left (4 x -\frac {{\mathrm e}^{5-x}}{x}-16\right )^{2}}\) \(26\)
parallelrisch \(\frac {32 x^{3} \ln \left (x \right )}{16 x^{2}-8 \,{\mathrm e}^{5-\ln \left (x \right )-x} x +\frac {{\mathrm e}^{-2 x +10}}{x^{2}}-128 x +32 \,{\mathrm e}^{5-\ln \left (x \right )-x}+256}\) \(57\)

Input:

int((((64*x^3+160*x^2)*ln(x)+32*x^2)*exp(5-ln(x)-x)+(-128*x^3+1536*x^2)*ln 
(x)-128*x^3+512*x^2)/(exp(5-ln(x)-x)^3+(-12*x+48)*exp(5-ln(x)-x)^2+(48*x^2 
-384*x+768)*exp(5-ln(x)-x)-64*x^3+768*x^2-3072*x+4096),x,method=_RETURNVER 
BOSE)
 

Output:

32*x^3*ln(x)/(4*x-1/x*exp(5-x)-16)^2
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.57 \[ \int \frac {512 x^2-128 x^3+\left (1536 x^2-128 x^3\right ) \log (x)+\frac {e^{5-x} \left (32 x^2+\left (160 x^2+64 x^3\right ) \log (x)\right )}{x}}{4096+\frac {e^{15-3 x}}{x^3}+\frac {e^{10-2 x} (48-12 x)}{x^2}-3072 x+768 x^2-64 x^3+\frac {e^{5-x} \left (768-384 x+48 x^2\right )}{x}} \, dx=\frac {32 \, x^{3} \log \left (x\right )}{16 \, x^{2} - 8 \, {\left (x - 4\right )} e^{\left (-x - \log \left (x\right ) + 5\right )} - 128 \, x + e^{\left (-2 \, x - 2 \, \log \left (x\right ) + 10\right )} + 256} \] Input:

integrate((((64*x^3+160*x^2)*log(x)+32*x^2)*exp(5-log(x)-x)+(-128*x^3+1536 
*x^2)*log(x)-128*x^3+512*x^2)/(exp(5-log(x)-x)^3+(-12*x+48)*exp(5-log(x)-x 
)^2+(48*x^2-384*x+768)*exp(5-log(x)-x)-64*x^3+768*x^2-3072*x+4096),x, algo 
rithm="fricas")
 

Output:

32*x^3*log(x)/(16*x^2 - 8*(x - 4)*e^(-x - log(x) + 5) - 128*x + e^(-2*x - 
2*log(x) + 10) + 256)
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 42 vs. \(2 (20) = 40\).

Time = 0.12 (sec) , antiderivative size = 42, normalized size of antiderivative = 1.50 \[ \int \frac {512 x^2-128 x^3+\left (1536 x^2-128 x^3\right ) \log (x)+\frac {e^{5-x} \left (32 x^2+\left (160 x^2+64 x^3\right ) \log (x)\right )}{x}}{4096+\frac {e^{15-3 x}}{x^3}+\frac {e^{10-2 x} (48-12 x)}{x^2}-3072 x+768 x^2-64 x^3+\frac {e^{5-x} \left (768-384 x+48 x^2\right )}{x}} \, dx=\frac {32 x^{5} \log {\left (x \right )}}{16 x^{4} - 128 x^{3} + 256 x^{2} + \left (- 8 x^{2} + 32 x\right ) e^{5 - x} + e^{10 - 2 x}} \] Input:

integrate((((64*x**3+160*x**2)*ln(x)+32*x**2)*exp(5-ln(x)-x)+(-128*x**3+15 
36*x**2)*ln(x)-128*x**3+512*x**2)/(exp(5-ln(x)-x)**3+(-12*x+48)*exp(5-ln(x 
)-x)**2+(48*x**2-384*x+768)*exp(5-ln(x)-x)-64*x**3+768*x**2-3072*x+4096),x 
)
 

Output:

32*x**5*log(x)/(16*x**4 - 128*x**3 + 256*x**2 + (-8*x**2 + 32*x)*exp(5 - x 
) + exp(10 - 2*x))
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 52, normalized size of antiderivative = 1.86 \[ \int \frac {512 x^2-128 x^3+\left (1536 x^2-128 x^3\right ) \log (x)+\frac {e^{5-x} \left (32 x^2+\left (160 x^2+64 x^3\right ) \log (x)\right )}{x}}{4096+\frac {e^{15-3 x}}{x^3}+\frac {e^{10-2 x} (48-12 x)}{x^2}-3072 x+768 x^2-64 x^3+\frac {e^{5-x} \left (768-384 x+48 x^2\right )}{x}} \, dx=\frac {32 \, x^{5} e^{\left (2 \, x\right )} \log \left (x\right )}{16 \, {\left (x^{4} - 8 \, x^{3} + 16 \, x^{2}\right )} e^{\left (2 \, x\right )} - 8 \, {\left (x^{2} e^{5} - 4 \, x e^{5}\right )} e^{x} + e^{10}} \] Input:

integrate((((64*x^3+160*x^2)*log(x)+32*x^2)*exp(5-log(x)-x)+(-128*x^3+1536 
*x^2)*log(x)-128*x^3+512*x^2)/(exp(5-log(x)-x)^3+(-12*x+48)*exp(5-log(x)-x 
)^2+(48*x^2-384*x+768)*exp(5-log(x)-x)-64*x^3+768*x^2-3072*x+4096),x, algo 
rithm="maxima")
 

Output:

32*x^5*e^(2*x)*log(x)/(16*(x^4 - 8*x^3 + 16*x^2)*e^(2*x) - 8*(x^2*e^5 - 4* 
x*e^5)*e^x + e^10)
 

Giac [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 51, normalized size of antiderivative = 1.82 \[ \int \frac {512 x^2-128 x^3+\left (1536 x^2-128 x^3\right ) \log (x)+\frac {e^{5-x} \left (32 x^2+\left (160 x^2+64 x^3\right ) \log (x)\right )}{x}}{4096+\frac {e^{15-3 x}}{x^3}+\frac {e^{10-2 x} (48-12 x)}{x^2}-3072 x+768 x^2-64 x^3+\frac {e^{5-x} \left (768-384 x+48 x^2\right )}{x}} \, dx=\frac {32 \, x^{5} \log \left (x\right )}{16 \, x^{4} - 128 \, x^{3} - 8 \, x^{2} e^{\left (-x + 5\right )} + 256 \, x^{2} + 32 \, x e^{\left (-x + 5\right )} + e^{\left (-2 \, x + 10\right )}} \] Input:

integrate((((64*x^3+160*x^2)*log(x)+32*x^2)*exp(5-log(x)-x)+(-128*x^3+1536 
*x^2)*log(x)-128*x^3+512*x^2)/(exp(5-log(x)-x)^3+(-12*x+48)*exp(5-log(x)-x 
)^2+(48*x^2-384*x+768)*exp(5-log(x)-x)-64*x^3+768*x^2-3072*x+4096),x, algo 
rithm="giac")
 

Output:

32*x^5*log(x)/(16*x^4 - 128*x^3 - 8*x^2*e^(-x + 5) + 256*x^2 + 32*x*e^(-x 
+ 5) + e^(-2*x + 10))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {512 x^2-128 x^3+\left (1536 x^2-128 x^3\right ) \log (x)+\frac {e^{5-x} \left (32 x^2+\left (160 x^2+64 x^3\right ) \log (x)\right )}{x}}{4096+\frac {e^{15-3 x}}{x^3}+\frac {e^{10-2 x} (48-12 x)}{x^2}-3072 x+768 x^2-64 x^3+\frac {e^{5-x} \left (768-384 x+48 x^2\right )}{x}} \, dx=\int \frac {\ln \left (x\right )\,\left (1536\,x^2-128\,x^3\right )+512\,x^2-128\,x^3+{\mathrm {e}}^{5-\ln \left (x\right )-x}\,\left (\ln \left (x\right )\,\left (64\,x^3+160\,x^2\right )+32\,x^2\right )}{{\mathrm {e}}^{15-3\,\ln \left (x\right )-3\,x}-3072\,x-{\mathrm {e}}^{10-2\,\ln \left (x\right )-2\,x}\,\left (12\,x-48\right )+{\mathrm {e}}^{5-\ln \left (x\right )-x}\,\left (48\,x^2-384\,x+768\right )+768\,x^2-64\,x^3+4096} \,d x \] Input:

int((log(x)*(1536*x^2 - 128*x^3) + 512*x^2 - 128*x^3 + exp(5 - log(x) - x) 
*(log(x)*(160*x^2 + 64*x^3) + 32*x^2))/(exp(15 - 3*log(x) - 3*x) - 3072*x 
- exp(10 - 2*log(x) - 2*x)*(12*x - 48) + exp(5 - log(x) - x)*(48*x^2 - 384 
*x + 768) + 768*x^2 - 64*x^3 + 4096),x)
 

Output:

int((log(x)*(1536*x^2 - 128*x^3) + 512*x^2 - 128*x^3 + exp(5 - log(x) - x) 
*(log(x)*(160*x^2 + 64*x^3) + 32*x^2))/(exp(15 - 3*log(x) - 3*x) - 3072*x 
- exp(10 - 2*log(x) - 2*x)*(12*x - 48) + exp(5 - log(x) - x)*(48*x^2 - 384 
*x + 768) + 768*x^2 - 64*x^3 + 4096), x)
 

Reduce [B] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 68, normalized size of antiderivative = 2.43 \[ \int \frac {512 x^2-128 x^3+\left (1536 x^2-128 x^3\right ) \log (x)+\frac {e^{5-x} \left (32 x^2+\left (160 x^2+64 x^3\right ) \log (x)\right )}{x}}{4096+\frac {e^{15-3 x}}{x^3}+\frac {e^{10-2 x} (48-12 x)}{x^2}-3072 x+768 x^2-64 x^3+\frac {e^{5-x} \left (768-384 x+48 x^2\right )}{x}} \, dx=\frac {32 e^{2 x} \mathrm {log}\left (x \right ) x^{5}}{16 e^{2 x} x^{4}-128 e^{2 x} x^{3}+256 e^{2 x} x^{2}-8 e^{x} e^{5} x^{2}+32 e^{x} e^{5} x +e^{10}} \] Input:

int((((64*x^3+160*x^2)*log(x)+32*x^2)*exp(5-log(x)-x)+(-128*x^3+1536*x^2)* 
log(x)-128*x^3+512*x^2)/(exp(5-log(x)-x)^3+(-12*x+48)*exp(5-log(x)-x)^2+(4 
8*x^2-384*x+768)*exp(5-log(x)-x)-64*x^3+768*x^2-3072*x+4096),x)
 

Output:

(32*e**(2*x)*log(x)*x**5)/(16*e**(2*x)*x**4 - 128*e**(2*x)*x**3 + 256*e**( 
2*x)*x**2 - 8*e**x*e**5*x**2 + 32*e**x*e**5*x + e**10)