\(\int \frac {-2 x^2+(e^3 x+2 x^2) (i \pi +\log (4+3 e))+(-2 x^2+(2 e^3 x+2 x^2) (i \pi +\log (4+3 e))) \log (\frac {x^2+(-e^3 x-x^2) (i \pi +\log (4+3 e))}{i \pi +\log (4+3 e)})}{-x+(e^3+x) (i \pi +\log (4+3 e))} \, dx\) [29]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 132, antiderivative size = 34 \[ \int \frac {-2 x^2+\left (e^3 x+2 x^2\right ) (i \pi +\log (4+3 e))+\left (-2 x^2+\left (2 e^3 x+2 x^2\right ) (i \pi +\log (4+3 e))\right ) \log \left (\frac {x^2+\left (-e^3 x-x^2\right ) (i \pi +\log (4+3 e))}{i \pi +\log (4+3 e)}\right )}{-x+\left (e^3+x\right ) (i \pi +\log (4+3 e))} \, dx=x^2 \log \left (x \left (-e^3-x+\frac {x}{i \pi +\log (-5+3 (3+e))}\right )\right ) \] Output:

x^2*ln((x/ln(-3*exp(1)-4)-exp(3)-x)*x)
 

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 31, normalized size of antiderivative = 0.91 \[ \int \frac {-2 x^2+\left (e^3 x+2 x^2\right ) (i \pi +\log (4+3 e))+\left (-2 x^2+\left (2 e^3 x+2 x^2\right ) (i \pi +\log (4+3 e))\right ) \log \left (\frac {x^2+\left (-e^3 x-x^2\right ) (i \pi +\log (4+3 e))}{i \pi +\log (4+3 e)}\right )}{-x+\left (e^3+x\right ) (i \pi +\log (4+3 e))} \, dx=x^2 \log \left (x \left (-e^3+x \left (-1+\frac {1}{i \pi +\log (4+3 e)}\right )\right )\right ) \] Input:

Integrate[(-2*x^2 + (E^3*x + 2*x^2)*(I*Pi + Log[4 + 3*E]) + (-2*x^2 + (2*E 
^3*x + 2*x^2)*(I*Pi + Log[4 + 3*E]))*Log[(x^2 + (-(E^3*x) - x^2)*(I*Pi + L 
og[4 + 3*E]))/(I*Pi + Log[4 + 3*E])])/(-x + (E^3 + x)*(I*Pi + Log[4 + 3*E] 
)),x]
 

Output:

x^2*Log[x*(-E^3 + x*(-1 + (I*Pi + Log[4 + 3*E])^(-1)))]
 

Rubi [A] (verified)

Time = 1.21 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.94, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {7292, 7293, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {-2 x^2+\left (-2 x^2+\left (2 x^2+2 e^3 x\right ) (\log (4+3 e)+i \pi )\right ) \log \left (\frac {x^2+\left (-x^2-e^3 x\right ) (\log (4+3 e)+i \pi )}{\log (4+3 e)+i \pi }\right )+\left (2 x^2+e^3 x\right ) (\log (4+3 e)+i \pi )}{-x+\left (x+e^3\right ) (\log (4+3 e)+i \pi )} \, dx\)

\(\Big \downarrow \) 7292

\(\displaystyle \int \frac {2 x^2-\left (-2 x^2+\left (2 x^2+2 e^3 x\right ) (\log (4+3 e)+i \pi )\right ) \log \left (\frac {x^2+\left (-x^2-e^3 x\right ) (\log (4+3 e)+i \pi )}{\log (4+3 e)+i \pi }\right )-\left (2 x^2+e^3 x\right ) (\log (4+3 e)+i \pi )}{x (1-i \pi -\log (4+3 e))-e^3 (\log (4+3 e)+i \pi )}dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (\frac {x \left (2 x (\pi +i (1-\log (4+3 e)))+e^3 (\pi -i \log (4+3 e))\right )}{x (\pi +i (1-\log (4+3 e)))+e^3 (\pi -i \log (4+3 e))}+2 x \log \left (x \left (-e^3-\left (x \left (1-\frac {1}{\log (4+3 e)+i \pi }\right )\right )\right )\right )\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle x^2 \log \left (-x \left (e^3+x \left (1-\frac {1}{\log (4+3 e)+i \pi }\right )\right )\right )\)

Input:

Int[(-2*x^2 + (E^3*x + 2*x^2)*(I*Pi + Log[4 + 3*E]) + (-2*x^2 + (2*E^3*x + 
 2*x^2)*(I*Pi + Log[4 + 3*E]))*Log[(x^2 + (-(E^3*x) - x^2)*(I*Pi + Log[4 + 
 3*E]))/(I*Pi + Log[4 + 3*E])])/(-x + (E^3 + x)*(I*Pi + Log[4 + 3*E])),x]
 

Output:

x^2*Log[-(x*(E^3 + x*(1 - (I*Pi + Log[4 + 3*E])^(-1))))]
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7292
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =! 
= u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
Maple [A] (verified)

Time = 0.88 (sec) , antiderivative size = 39, normalized size of antiderivative = 1.15

method result size
norman \(x^{2} \ln \left (\frac {\left (-x \,{\mathrm e}^{3}-x^{2}\right ) \ln \left (-3 \,{\mathrm e}-4\right )+x^{2}}{\ln \left (-3 \,{\mathrm e}-4\right )}\right )\) \(39\)
risch \(x^{2} \ln \left (\frac {\left (-x \,{\mathrm e}^{3}-x^{2}\right ) \ln \left (-3 \,{\mathrm e}-4\right )+x^{2}}{\ln \left (-3 \,{\mathrm e}-4\right )}\right )\) \(39\)
default \(x^{2} \ln \left (\frac {x \left (-{\mathrm e}^{3} \ln \left (-3 \,{\mathrm e}-4\right )-\ln \left (-3 \,{\mathrm e}-4\right ) x +x \right )}{\ln \left (-3 \,{\mathrm e}-4\right )}\right )\) \(40\)
parts \(x^{2} \ln \left (\frac {x \left (-{\mathrm e}^{3} \ln \left (-3 \,{\mathrm e}-4\right )-\ln \left (-3 \,{\mathrm e}-4\right ) x +x \right )}{\ln \left (-3 \,{\mathrm e}-4\right )}\right )\) \(40\)
parallelrisch \(\frac {\ln \left (-3 \,{\mathrm e}-4\right )^{2} x^{2} \ln \left (\frac {\left (-x \,{\mathrm e}^{3}-x^{2}\right ) \ln \left (-3 \,{\mathrm e}-4\right )+x^{2}}{\ln \left (-3 \,{\mathrm e}-4\right )}\right )-2 \ln \left (-3 \,{\mathrm e}-4\right ) x^{2} \ln \left (\frac {\left (-x \,{\mathrm e}^{3}-x^{2}\right ) \ln \left (-3 \,{\mathrm e}-4\right )+x^{2}}{\ln \left (-3 \,{\mathrm e}-4\right )}\right )+x^{2} \ln \left (\frac {\left (-x \,{\mathrm e}^{3}-x^{2}\right ) \ln \left (-3 \,{\mathrm e}-4\right )+x^{2}}{\ln \left (-3 \,{\mathrm e}-4\right )}\right )}{\left (\ln \left (-3 \,{\mathrm e}-4\right )-1\right )^{2}}\) \(145\)

Input:

int((((2*x*exp(3)+2*x^2)*ln(-3*exp(1)-4)-2*x^2)*ln(((-x*exp(3)-x^2)*ln(-3* 
exp(1)-4)+x^2)/ln(-3*exp(1)-4))+(x*exp(3)+2*x^2)*ln(-3*exp(1)-4)-2*x^2)/(( 
exp(3)+x)*ln(-3*exp(1)-4)-x),x,method=_RETURNVERBOSE)
 

Output:

x^2*ln(((-x*exp(3)-x^2)*ln(-3*exp(1)-4)+x^2)/ln(-3*exp(1)-4))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.06 \[ \int \frac {-2 x^2+\left (e^3 x+2 x^2\right ) (i \pi +\log (4+3 e))+\left (-2 x^2+\left (2 e^3 x+2 x^2\right ) (i \pi +\log (4+3 e))\right ) \log \left (\frac {x^2+\left (-e^3 x-x^2\right ) (i \pi +\log (4+3 e))}{i \pi +\log (4+3 e)}\right )}{-x+\left (e^3+x\right ) (i \pi +\log (4+3 e))} \, dx=x^{2} \log \left (\frac {x^{2} - {\left (x^{2} + x e^{3}\right )} \log \left (-3 \, e - 4\right )}{\log \left (-3 \, e - 4\right )}\right ) \] Input:

integrate((((2*x*exp(3)+2*x^2)*log(-3*exp(1)-4)-2*x^2)*log(((-x*exp(3)-x^2 
)*log(-3*exp(1)-4)+x^2)/log(-3*exp(1)-4))+(x*exp(3)+2*x^2)*log(-3*exp(1)-4 
)-2*x^2)/((exp(3)+x)*log(-3*exp(1)-4)-x),x, algorithm="fricas")
 

Output:

x^2*log((x^2 - (x^2 + x*e^3)*log(-3*e - 4))/log(-3*e - 4))
 

Sympy [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 107 vs. \(2 (24) = 48\).

Time = 0.28 (sec) , antiderivative size = 107, normalized size of antiderivative = 3.15 \[ \int \frac {-2 x^2+\left (e^3 x+2 x^2\right ) (i \pi +\log (4+3 e))+\left (-2 x^2+\left (2 e^3 x+2 x^2\right ) (i \pi +\log (4+3 e))\right ) \log \left (\frac {x^2+\left (-e^3 x-x^2\right ) (i \pi +\log (4+3 e))}{i \pi +\log (4+3 e)}\right )}{-x+\left (e^3+x\right ) (i \pi +\log (4+3 e))} \, dx=x^{2} \log {\left (- \frac {i \pi x^{2}}{\log {\left (4 + 3 e \right )} + i \pi } + \frac {x^{2}}{\log {\left (4 + 3 e \right )} + i \pi } - \frac {x^{2} \log {\left (4 + 3 e \right )}}{\log {\left (4 + 3 e \right )} + i \pi } - \frac {i \pi x e^{3}}{\log {\left (4 + 3 e \right )} + i \pi } - \frac {x e^{3} \log {\left (4 + 3 e \right )}}{\log {\left (4 + 3 e \right )} + i \pi } \right )} \] Input:

integrate((((2*x*exp(3)+2*x**2)*ln(-3*exp(1)-4)-2*x**2)*ln(((-x*exp(3)-x** 
2)*ln(-3*exp(1)-4)+x**2)/ln(-3*exp(1)-4))+(x*exp(3)+2*x**2)*ln(-3*exp(1)-4 
)-2*x**2)/((exp(3)+x)*ln(-3*exp(1)-4)-x),x)
 

Output:

x**2*log(-I*pi*x**2/(log(4 + 3*E) + I*pi) + x**2/(log(4 + 3*E) + I*pi) - x 
**2*log(4 + 3*E)/(log(4 + 3*E) + I*pi) - I*pi*x*exp(3)/(log(4 + 3*E) + I*p 
i) - x*exp(3)*log(4 + 3*E)/(log(4 + 3*E) + I*pi))
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 689 vs. \(2 (24) = 48\).

Time = 0.09 (sec) , antiderivative size = 689, normalized size of antiderivative = 20.26 \[ \int \frac {-2 x^2+\left (e^3 x+2 x^2\right ) (i \pi +\log (4+3 e))+\left (-2 x^2+\left (2 e^3 x+2 x^2\right ) (i \pi +\log (4+3 e))\right ) \log \left (\frac {x^2+\left (-e^3 x-x^2\right ) (i \pi +\log (4+3 e))}{i \pi +\log (4+3 e)}\right )}{-x+\left (e^3+x\right ) (i \pi +\log (4+3 e))} \, dx =\text {Too large to display} \] Input:

integrate((((2*x*exp(3)+2*x^2)*log(-3*exp(1)-4)-2*x^2)*log(((-x*exp(3)-x^2 
)*log(-3*exp(1)-4)+x^2)/log(-3*exp(1)-4))+(x*exp(3)+2*x^2)*log(-3*exp(1)-4 
)-2*x^2)/((exp(3)+x)*log(-3*exp(1)-4)-x),x, algorithm="maxima")
 

Output:

-(e^3*log(x*(log(-3*e - 4) - 1) + e^3*log(-3*e - 4))*log(-3*e - 4)/(log(-3 
*e - 4)^2 - 2*log(-3*e - 4) + 1) - x/(log(-3*e - 4) - 1))*e^3*log(-3*e - 4 
) - 2*e^6*log(x*(log(-3*e - 4) - 1) + e^3*log(-3*e - 4))*log(-3*e - 4)^2/( 
log(-3*e - 4)^3 - 3*log(-3*e - 4)^2 + 3*log(-3*e - 4) - 1) + (2*e^6*log(x* 
(log(-3*e - 4) - 1) + e^3*log(-3*e - 4))*log(-3*e - 4)^2/(log(-3*e - 4)^3 
- 3*log(-3*e - 4)^2 + 3*log(-3*e - 4) - 1) + (x^2*(log(-3*e - 4) - 1) - 2* 
x*e^3*log(-3*e - 4))/(log(-3*e - 4)^2 - 2*log(-3*e - 4) + 1))*log(-3*e - 4 
) + (((log(-3*e - 4)^2 - 2*log(-3*e - 4) + 1)*log(-3*e - 4) - log(-3*e - 4 
)^2 + 2*log(-3*e - 4) - 1)*x^2*log(x) + (log(-3*e - 4)^2 - 2*log(-3*e - 4) 
 + 1)*x*e^3*log(-3*e - 4) - ((log(-3*e - 4)^2 + (log(-3*e - 4)^2 - 2*log(- 
3*e - 4) + 1)*log(log(-3*e - 4)) - 2*log(-3*e - 4) + 1)*log(-3*e - 4) - lo 
g(-3*e - 4)^2 - (log(-3*e - 4)^2 - 2*log(-3*e - 4) + 1)*log(log(-3*e - 4)) 
 + 2*log(-3*e - 4) - 1)*x^2 + (((log(-3*e - 4)^2 - 2*log(-3*e - 4) + 1)*lo 
g(-3*e - 4) - log(-3*e - 4)^2 + 2*log(-3*e - 4) - 1)*x^2 - (log(-3*e - 4)^ 
3 - log(-3*e - 4)^2)*e^6)*log(-x*(log(-3*e - 4) - 1) - e^3*log(-3*e - 4))) 
/((log(-3*e - 4)^2 - 2*log(-3*e - 4) + 1)*log(-3*e - 4) - log(-3*e - 4)^2 
+ 2*log(-3*e - 4) - 1) - (x^2*(log(-3*e - 4) - 1) - 2*x*e^3*log(-3*e - 4)) 
/(log(-3*e - 4)^2 - 2*log(-3*e - 4) + 1)
                                                                                    
                                                                                    
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1346 vs. \(2 (24) = 48\).

Time = 0.30 (sec) , antiderivative size = 1346, normalized size of antiderivative = 39.59 \[ \int \frac {-2 x^2+\left (e^3 x+2 x^2\right ) (i \pi +\log (4+3 e))+\left (-2 x^2+\left (2 e^3 x+2 x^2\right ) (i \pi +\log (4+3 e))\right ) \log \left (\frac {x^2+\left (-e^3 x-x^2\right ) (i \pi +\log (4+3 e))}{i \pi +\log (4+3 e)}\right )}{-x+\left (e^3+x\right ) (i \pi +\log (4+3 e))} \, dx=\text {Too large to display} \] Input:

integrate((((2*x*exp(3)+2*x^2)*log(-3*exp(1)-4)-2*x^2)*log(((-x*exp(3)-x^2 
)*log(-3*exp(1)-4)+x^2)/log(-3*exp(1)-4))+(x*exp(3)+2*x^2)*log(-3*exp(1)-4 
)-2*x^2)/((exp(3)+x)*log(-3*exp(1)-4)-x),x, algorithm="giac")
 

Output:

1/2*(pi^4*x^2*log(pi^2*x^4 + 2*pi^2*x^3*e^3 + x^4*log(3*e + 4)^2 + 2*x^3*e 
^3*log(3*e + 4)^2 + pi^2*x^2*e^6 - 2*x^4*log(3*e + 4) - 2*x^3*e^3*log(3*e 
+ 4) + x^2*e^6*log(3*e + 4)^2 + x^4) + 2*pi^2*x^2*log(pi^2*x^4 + 2*pi^2*x^ 
3*e^3 + x^4*log(3*e + 4)^2 + 2*x^3*e^3*log(3*e + 4)^2 + pi^2*x^2*e^6 - 2*x 
^4*log(3*e + 4) - 2*x^3*e^3*log(3*e + 4) + x^2*e^6*log(3*e + 4)^2 + x^4)*l 
og(3*e + 4)^2 + x^2*log(pi^2*x^4 + 2*pi^2*x^3*e^3 + x^4*log(3*e + 4)^2 + 2 
*x^3*e^3*log(3*e + 4)^2 + pi^2*x^2*e^6 - 2*x^4*log(3*e + 4) - 2*x^3*e^3*lo 
g(3*e + 4) + x^2*e^6*log(3*e + 4)^2 + x^4)*log(3*e + 4)^4 - 2*pi^4*x^2*log 
(abs(log(-3*e - 4))) - 4*pi^2*x^2*log(3*e + 4)^2*log(abs(log(-3*e - 4))) - 
 2*x^2*log(3*e + 4)^4*log(abs(log(-3*e - 4))) - 4*pi^2*x^2*log(pi^2*x^4 + 
2*pi^2*x^3*e^3 + x^4*log(3*e + 4)^2 + 2*x^3*e^3*log(3*e + 4)^2 + pi^2*x^2* 
e^6 - 2*x^4*log(3*e + 4) - 2*x^3*e^3*log(3*e + 4) + x^2*e^6*log(3*e + 4)^2 
 + x^4)*log(3*e + 4) - 4*x^2*log(pi^2*x^4 + 2*pi^2*x^3*e^3 + x^4*log(3*e + 
 4)^2 + 2*x^3*e^3*log(3*e + 4)^2 + pi^2*x^2*e^6 - 2*x^4*log(3*e + 4) - 2*x 
^3*e^3*log(3*e + 4) + x^2*e^6*log(3*e + 4)^2 + x^4)*log(3*e + 4)^3 + 8*pi^ 
2*x^2*log(3*e + 4)*log(abs(log(-3*e - 4))) + 8*x^2*log(3*e + 4)^3*log(abs( 
log(-3*e - 4))) - 4*pi^4*e^6*sgn(pi*x + pi*e^3) - 4*pi^2*e^6*log(3*e + 4)^ 
2*sgn(pi*x + pi*e^3) + 2*pi^2*x^2*log(pi^2*x^4 + 2*pi^2*x^3*e^3 + x^4*log( 
3*e + 4)^2 + 2*x^3*e^3*log(3*e + 4)^2 + pi^2*x^2*e^6 - 2*x^4*log(3*e + 4) 
- 2*x^3*e^3*log(3*e + 4) + x^2*e^6*log(3*e + 4)^2 + x^4) + 6*x^2*log(pi...
 

Mupad [B] (verification not implemented)

Time = 4.35 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.12 \[ \int \frac {-2 x^2+\left (e^3 x+2 x^2\right ) (i \pi +\log (4+3 e))+\left (-2 x^2+\left (2 e^3 x+2 x^2\right ) (i \pi +\log (4+3 e))\right ) \log \left (\frac {x^2+\left (-e^3 x-x^2\right ) (i \pi +\log (4+3 e))}{i \pi +\log (4+3 e)}\right )}{-x+\left (e^3+x\right ) (i \pi +\log (4+3 e))} \, dx=x^2\,\ln \left (-\frac {\ln \left (-3\,\mathrm {e}-4\right )\,\left (x^2+{\mathrm {e}}^3\,x\right )-x^2}{\ln \left (-3\,\mathrm {e}-4\right )}\right ) \] Input:

int(-(log(-(log(- 3*exp(1) - 4)*(x*exp(3) + x^2) - x^2)/log(- 3*exp(1) - 4 
))*(log(- 3*exp(1) - 4)*(2*x*exp(3) + 2*x^2) - 2*x^2) + log(- 3*exp(1) - 4 
)*(x*exp(3) + 2*x^2) - 2*x^2)/(x - log(- 3*exp(1) - 4)*(x + exp(3))),x)
 

Output:

x^2*log(-(log(- 3*exp(1) - 4)*(x*exp(3) + x^2) - x^2)/log(- 3*exp(1) - 4))
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 322, normalized size of antiderivative = 9.47 \[ \int \frac {-2 x^2+\left (e^3 x+2 x^2\right ) (i \pi +\log (4+3 e))+\left (-2 x^2+\left (2 e^3 x+2 x^2\right ) (i \pi +\log (4+3 e))\right ) \log \left (\frac {x^2+\left (-e^3 x-x^2\right ) (i \pi +\log (4+3 e))}{i \pi +\log (4+3 e)}\right )}{-x+\left (e^3+x\right ) (i \pi +\log (4+3 e))} \, dx=\frac {\mathrm {log}\left (-3 e -4\right )^{3} \mathrm {log}\left (\frac {-\mathrm {log}\left (-3 e -4\right ) e^{3} x -\mathrm {log}\left (-3 e -4\right ) x^{2}+x^{2}}{\mathrm {log}\left (-3 e -4\right )}\right ) x^{2}-2 \mathrm {log}\left (-3 e -4\right )^{2} \mathrm {log}\left (\mathrm {log}\left (-3 e -4\right ) e^{3}+\mathrm {log}\left (-3 e -4\right ) x -x \right ) e^{6}+2 \mathrm {log}\left (-3 e -4\right )^{2} \mathrm {log}\left (\frac {-\mathrm {log}\left (-3 e -4\right ) e^{3} x -\mathrm {log}\left (-3 e -4\right ) x^{2}+x^{2}}{\mathrm {log}\left (-3 e -4\right )}\right ) e^{6}-3 \mathrm {log}\left (-3 e -4\right )^{2} \mathrm {log}\left (\frac {-\mathrm {log}\left (-3 e -4\right ) e^{3} x -\mathrm {log}\left (-3 e -4\right ) x^{2}+x^{2}}{\mathrm {log}\left (-3 e -4\right )}\right ) x^{2}-2 \mathrm {log}\left (-3 e -4\right )^{2} \mathrm {log}\left (x \right ) e^{6}+3 \,\mathrm {log}\left (-3 e -4\right ) \mathrm {log}\left (\frac {-\mathrm {log}\left (-3 e -4\right ) e^{3} x -\mathrm {log}\left (-3 e -4\right ) x^{2}+x^{2}}{\mathrm {log}\left (-3 e -4\right )}\right ) x^{2}-\mathrm {log}\left (\frac {-\mathrm {log}\left (-3 e -4\right ) e^{3} x -\mathrm {log}\left (-3 e -4\right ) x^{2}+x^{2}}{\mathrm {log}\left (-3 e -4\right )}\right ) x^{2}}{\mathrm {log}\left (-3 e -4\right )^{3}-3 \mathrm {log}\left (-3 e -4\right )^{2}+3 \,\mathrm {log}\left (-3 e -4\right )-1} \] Input:

int((((2*x*exp(3)+2*x^2)*log(-3*exp(1)-4)-2*x^2)*log(((-x*exp(3)-x^2)*log( 
-3*exp(1)-4)+x^2)/log(-3*exp(1)-4))+(x*exp(3)+2*x^2)*log(-3*exp(1)-4)-2*x^ 
2)/((exp(3)+x)*log(-3*exp(1)-4)-x),x)
 

Output:

(log( - 3*e - 4)**3*log(( - log( - 3*e - 4)*e**3*x - log( - 3*e - 4)*x**2 
+ x**2)/log( - 3*e - 4))*x**2 - 2*log( - 3*e - 4)**2*log(log( - 3*e - 4)*e 
**3 + log( - 3*e - 4)*x - x)*e**6 + 2*log( - 3*e - 4)**2*log(( - log( - 3* 
e - 4)*e**3*x - log( - 3*e - 4)*x**2 + x**2)/log( - 3*e - 4))*e**6 - 3*log 
( - 3*e - 4)**2*log(( - log( - 3*e - 4)*e**3*x - log( - 3*e - 4)*x**2 + x* 
*2)/log( - 3*e - 4))*x**2 - 2*log( - 3*e - 4)**2*log(x)*e**6 + 3*log( - 3* 
e - 4)*log(( - log( - 3*e - 4)*e**3*x - log( - 3*e - 4)*x**2 + x**2)/log( 
- 3*e - 4))*x**2 - log(( - log( - 3*e - 4)*e**3*x - log( - 3*e - 4)*x**2 + 
 x**2)/log( - 3*e - 4))*x**2)/(log( - 3*e - 4)**3 - 3*log( - 3*e - 4)**2 + 
 3*log( - 3*e - 4) - 1)