\(\int \frac {\sqrt [4]{-1+x^4} (-1+x^8)}{x^6 (1+x^8)} \, dx\) [1037]

Optimal result
Mathematica [A] (verified)
Rubi [C] (verified)
Maple [C] (warning: unable to verify)
Fricas [C] (verification not implemented)
Sympy [N/A]
Maxima [N/A]
Giac [C] (verification not implemented)
Mupad [N/A]
Reduce [N/A]

Optimal result

Integrand size = 25, antiderivative size = 78 \[ \int \frac {\sqrt [4]{-1+x^4} \left (-1+x^8\right )}{x^6 \left (1+x^8\right )} \, dx=\frac {\left (1-x^4\right ) \sqrt [4]{-1+x^4}}{5 x^5}+\frac {1}{4} \text {RootSum}\left [2-2 \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-\log (x) \text {$\#$1}+\log \left (\sqrt [4]{-1+x^4}-x \text {$\#$1}\right ) \text {$\#$1}}{-1+\text {$\#$1}^4}\&\right ] \] Output:

Unintegrable
 

Mathematica [A] (verified)

Time = 0.37 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.95 \[ \int \frac {\sqrt [4]{-1+x^4} \left (-1+x^8\right )}{x^6 \left (1+x^8\right )} \, dx=\frac {-4 \left (-1+x^4\right )^{5/4}+5 x^5 \text {RootSum}\left [2-2 \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-\log (x) \text {$\#$1}+\log \left (\sqrt [4]{-1+x^4}-x \text {$\#$1}\right ) \text {$\#$1}}{-1+\text {$\#$1}^4}\&\right ]}{20 x^5} \] Input:

Integrate[((-1 + x^4)^(1/4)*(-1 + x^8))/(x^6*(1 + x^8)),x]
 

Output:

(-4*(-1 + x^4)^(5/4) + 5*x^5*RootSum[2 - 2*#1^4 + #1^8 & , (-(Log[x]*#1) + 
 Log[(-1 + x^4)^(1/4) - x*#1]*#1)/(-1 + #1^4) & ])/(20*x^5)
 

Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 1.82 (sec) , antiderivative size = 522, normalized size of antiderivative = 6.69, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {1388, 7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [4]{x^4-1} \left (x^8-1\right )}{x^6 \left (x^8+1\right )} \, dx\)

\(\Big \downarrow \) 1388

\(\displaystyle \int \frac {\left (x^4-1\right )^{5/4} \left (x^4+1\right )}{x^6 \left (x^8+1\right )}dx\)

\(\Big \downarrow \) 7276

\(\displaystyle \int \left (\frac {\left (x^4-1\right )^{5/4}}{x^6}+\frac {\left (x^4-1\right )^{5/4}}{x^2}+\frac {\left (-x^4-1\right ) \left (x^4-1\right )^{5/4} x^2}{x^8+1}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt [4]{x^4-1} x^3 \operatorname {AppellF1}\left (\frac {3}{4},-\frac {5}{4},1,\frac {7}{4},x^4,-i x^4\right )}{6 \sqrt [4]{1-x^4}}+\frac {\sqrt [4]{x^4-1} x^3 \operatorname {AppellF1}\left (\frac {3}{4},-\frac {5}{4},1,\frac {7}{4},x^4,i x^4\right )}{6 \sqrt [4]{1-x^4}}+\frac {\sqrt [4]{x^4-1} x^3 \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{4},1,\frac {7}{4},x^4,-i x^4\right )}{6 \sqrt [4]{1-x^4}}+\frac {\sqrt [4]{x^4-1} x^3 \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{4},1,\frac {7}{4},x^4,i x^4\right )}{6 \sqrt [4]{1-x^4}}-\frac {1}{2} \arctan \left (\frac {x}{\sqrt [4]{x^4-1}}\right )+\frac {1}{8} (1-i)^{5/4} \arctan \left (\frac {\sqrt [4]{1-i} x}{\sqrt [4]{x^4-1}}\right )+\frac {\arctan \left (\frac {\sqrt [4]{1-i} x}{\sqrt [4]{x^4-1}}\right )}{4 (1-i)^{3/4}}+\frac {1}{8} (1+i)^{5/4} \arctan \left (\frac {\sqrt [4]{1+i} x}{\sqrt [4]{x^4-1}}\right )+\frac {\arctan \left (\frac {\sqrt [4]{1+i} x}{\sqrt [4]{x^4-1}}\right )}{4 (1+i)^{3/4}}+\frac {1}{2} \text {arctanh}\left (\frac {x}{\sqrt [4]{x^4-1}}\right )-\frac {1}{8} (1-i)^{5/4} \text {arctanh}\left (\frac {\sqrt [4]{1-i} x}{\sqrt [4]{x^4-1}}\right )-\frac {\text {arctanh}\left (\frac {\sqrt [4]{1-i} x}{\sqrt [4]{x^4-1}}\right )}{4 (1-i)^{3/4}}-\frac {1}{8} (1+i)^{5/4} \text {arctanh}\left (\frac {\sqrt [4]{1+i} x}{\sqrt [4]{x^4-1}}\right )-\frac {\text {arctanh}\left (\frac {\sqrt [4]{1+i} x}{\sqrt [4]{x^4-1}}\right )}{4 (1+i)^{3/4}}-\frac {\left (x^4-1\right )^{5/4}}{x}-\frac {\sqrt [4]{x^4-1}}{x}-\frac {\left (x^4-1\right )^{5/4}}{5 x^5}+\sqrt [4]{x^4-1} x^3\)

Input:

Int[((-1 + x^4)^(1/4)*(-1 + x^8))/(x^6*(1 + x^8)),x]
 

Output:

-((-1 + x^4)^(1/4)/x) + x^3*(-1 + x^4)^(1/4) - (-1 + x^4)^(5/4)/(5*x^5) - 
(-1 + x^4)^(5/4)/x + (x^3*(-1 + x^4)^(1/4)*AppellF1[3/4, -5/4, 1, 7/4, x^4 
, (-I)*x^4])/(6*(1 - x^4)^(1/4)) + (x^3*(-1 + x^4)^(1/4)*AppellF1[3/4, -5/ 
4, 1, 7/4, x^4, I*x^4])/(6*(1 - x^4)^(1/4)) + (x^3*(-1 + x^4)^(1/4)*Appell 
F1[3/4, -1/4, 1, 7/4, x^4, (-I)*x^4])/(6*(1 - x^4)^(1/4)) + (x^3*(-1 + x^4 
)^(1/4)*AppellF1[3/4, -1/4, 1, 7/4, x^4, I*x^4])/(6*(1 - x^4)^(1/4)) - Arc 
Tan[x/(-1 + x^4)^(1/4)]/2 + ArcTan[((1 - I)^(1/4)*x)/(-1 + x^4)^(1/4)]/(4* 
(1 - I)^(3/4)) + ((1 - I)^(5/4)*ArcTan[((1 - I)^(1/4)*x)/(-1 + x^4)^(1/4)] 
)/8 + ArcTan[((1 + I)^(1/4)*x)/(-1 + x^4)^(1/4)]/(4*(1 + I)^(3/4)) + ((1 + 
 I)^(5/4)*ArcTan[((1 + I)^(1/4)*x)/(-1 + x^4)^(1/4)])/8 + ArcTanh[x/(-1 + 
x^4)^(1/4)]/2 - ArcTanh[((1 - I)^(1/4)*x)/(-1 + x^4)^(1/4)]/(4*(1 - I)^(3/ 
4)) - ((1 - I)^(5/4)*ArcTanh[((1 - I)^(1/4)*x)/(-1 + x^4)^(1/4)])/8 - ArcT 
anh[((1 + I)^(1/4)*x)/(-1 + x^4)^(1/4)]/(4*(1 + I)^(3/4)) - ((1 + I)^(5/4) 
*ArcTanh[((1 + I)^(1/4)*x)/(-1 + x^4)^(1/4)])/8
 

Defintions of rubi rules used

rule 1388
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), 
x_Symbol] :> Int[u*(d + e*x^n)^(p + q)*(a/d + (c/e)*x^n)^p, x] /; FreeQ[{a, 
 c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a*e^2, 0] && (Integer 
Q[p] || (GtQ[a, 0] && GtQ[d, 0]))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 1.

Time = 15.07 (sec) , antiderivative size = 3770, normalized size of antiderivative = 48.33

\[\text {output too large to display}\]

Input:

int((x^4-1)^(1/4)*(x^8-1)/x^6/(x^8+1),x)
 

Output:

-1/5*(x^8-2*x^4+1)/x^5/(x^4-1)^(3/4)+(2*RootOf(8388608*_Z^8-4096*_Z^4+1)*l 
n((8192*x^12*RootOf(8388608*_Z^8-4096*_Z^4+1)^5-131072*(x^12-3*x^8+3*x^4-1 
)^(1/4)*RootOf(8388608*_Z^8-4096*_Z^4+1)^6*x^9-16384*RootOf(8388608*_Z^8-4 
096*_Z^4+1)^5*x^8+2*x^12*RootOf(8388608*_Z^8-4096*_Z^4+1)+262144*(x^12-3*x 
^8+3*x^4-1)^(1/4)*RootOf(8388608*_Z^8-4096*_Z^4+1)^6*x^5+32*(x^12-3*x^8+3* 
x^4-1)^(1/4)*RootOf(8388608*_Z^8-4096*_Z^4+1)^2*x^9-256*(x^12-3*x^8+3*x^4- 
1)^(1/2)*RootOf(8388608*_Z^8-4096*_Z^4+1)^3*x^6+2048*RootOf(8388608*_Z^8-4 
096*_Z^4+1)^4*(x^12-3*x^8+3*x^4-1)^(3/4)*x^3+8192*RootOf(8388608*_Z^8-4096 
*_Z^4+1)^5*x^4-6*RootOf(8388608*_Z^8-4096*_Z^4+1)*x^8-131072*(x^12-3*x^8+3 
*x^4-1)^(1/4)*RootOf(8388608*_Z^8-4096*_Z^4+1)^6*x-64*(x^12-3*x^8+3*x^4-1) 
^(1/4)*RootOf(8388608*_Z^8-4096*_Z^4+1)^2*x^5+256*(x^12-3*x^8+3*x^4-1)^(1/ 
2)*RootOf(8388608*_Z^8-4096*_Z^4+1)^3*x^2-(x^12-3*x^8+3*x^4-1)^(3/4)*x^3+6 
*RootOf(8388608*_Z^8-4096*_Z^4+1)*x^4+32*(x^12-3*x^8+3*x^4-1)^(1/4)*RootOf 
(8388608*_Z^8-4096*_Z^4+1)^2*x-2*RootOf(8388608*_Z^8-4096*_Z^4+1))/(4096*R 
ootOf(8388608*_Z^8-4096*_Z^4+1)^4*x^4-x^4+1)/(1+x)^2/(4096*RootOf(8388608* 
_Z^8-4096*_Z^4+1)^4*x-x+1)^2/(-1+x)^2/(4096*RootOf(8388608*_Z^8-4096*_Z^4+ 
1)^4*x-x-1)^2)-1/16*RootOf(_Z^4+1048576*RootOf(8388608*_Z^8-4096*_Z^4+1)^4 
-512)*ln((-8192*x^12*RootOf(_Z^4+1048576*RootOf(8388608*_Z^8-4096*_Z^4+1)^ 
4-512)^2*RootOf(8388608*_Z^8-4096*_Z^4+1)^4-4096*(x^12-3*x^8+3*x^4-1)^(1/4 
)*RootOf(8388608*_Z^8-4096*_Z^4+1)^4*RootOf(_Z^4+1048576*RootOf(8388608...
 

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 3.66 (sec) , antiderivative size = 863, normalized size of antiderivative = 11.06 \[ \int \frac {\sqrt [4]{-1+x^4} \left (-1+x^8\right )}{x^6 \left (1+x^8\right )} \, dx=\text {Too large to display} \] Input:

integrate((x^4-1)^(1/4)*(x^8-1)/x^6/(x^8+1),x, algorithm="fricas")
 

Output:

-1/40*(5*x^5*sqrt(-sqrt(I + 1))*log(-(4*sqrt(I + 1)*((3*I + 4)*x^7 + (4*I 
- 3)*x^3)*(x^4 - 1)^(1/4) + 4*((3*I + 4)*x^5 + (4*I - 3)*x)*(x^4 - 1)^(3/4 
) - (sqrt(I + 1)*(-(15*I - 5)*x^8 + (12*I + 16)*x^4 + I - 7) - 4*((4*I - 3 
)*x^6 - (3*I + 4)*x^2)*sqrt(x^4 - 1))*sqrt(-sqrt(I + 1)))/(x^8 + 1)) - 5*x 
^5*sqrt(-sqrt(I + 1))*log(-(4*sqrt(I + 1)*((3*I + 4)*x^7 + (4*I - 3)*x^3)* 
(x^4 - 1)^(1/4) + 4*((3*I + 4)*x^5 + (4*I - 3)*x)*(x^4 - 1)^(3/4) - (sqrt( 
I + 1)*((15*I - 5)*x^8 - (12*I + 16)*x^4 - I + 7) - 4*(-(4*I - 3)*x^6 + (3 
*I + 4)*x^2)*sqrt(x^4 - 1))*sqrt(-sqrt(I + 1)))/(x^8 + 1)) + 5*x^5*sqrt(-s 
qrt(-I + 1))*log(-(4*sqrt(-I + 1)*(-(3*I - 4)*x^7 - (4*I + 3)*x^3)*(x^4 - 
1)^(1/4) + 4*(-(3*I - 4)*x^5 - (4*I + 3)*x)*(x^4 - 1)^(3/4) - (sqrt(-I + 1 
)*((15*I + 5)*x^8 - (12*I - 16)*x^4 - I - 7) - 4*(-(4*I + 3)*x^6 + (3*I - 
4)*x^2)*sqrt(x^4 - 1))*sqrt(-sqrt(-I + 1)))/(x^8 + 1)) - 5*x^5*sqrt(-sqrt( 
-I + 1))*log(-(4*sqrt(-I + 1)*(-(3*I - 4)*x^7 - (4*I + 3)*x^3)*(x^4 - 1)^( 
1/4) + 4*(-(3*I - 4)*x^5 - (4*I + 3)*x)*(x^4 - 1)^(3/4) - (sqrt(-I + 1)*(- 
(15*I + 5)*x^8 + (12*I - 16)*x^4 + I + 7) - 4*((4*I + 3)*x^6 - (3*I - 4)*x 
^2)*sqrt(x^4 - 1))*sqrt(-sqrt(-I + 1)))/(x^8 + 1)) - 5*(-I + 1)^(1/4)*x^5* 
log(-(4*sqrt(-I + 1)*((3*I - 4)*x^7 + (4*I + 3)*x^3)*(x^4 - 1)^(1/4) + 4*( 
-(3*I - 4)*x^5 - (4*I + 3)*x)*(x^4 - 1)^(3/4) - (-I + 1)^(1/4)*(sqrt(-I + 
1)*((15*I + 5)*x^8 - (12*I - 16)*x^4 - I - 7) - 4*((4*I + 3)*x^6 - (3*I - 
4)*x^2)*sqrt(x^4 - 1)))/(x^8 + 1)) + 5*(-I + 1)^(1/4)*x^5*log(-(4*sqrt(...
 

Sympy [N/A]

Not integrable

Time = 37.14 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.53 \[ \int \frac {\sqrt [4]{-1+x^4} \left (-1+x^8\right )}{x^6 \left (1+x^8\right )} \, dx=\int \frac {\sqrt [4]{\left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right )} \left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right ) \left (x^{4} + 1\right )}{x^{6} \left (x^{8} + 1\right )}\, dx \] Input:

integrate((x**4-1)**(1/4)*(x**8-1)/x**6/(x**8+1),x)
 

Output:

Integral(((x - 1)*(x + 1)*(x**2 + 1))**(1/4)*(x - 1)*(x + 1)*(x**2 + 1)*(x 
**4 + 1)/(x**6*(x**8 + 1)), x)
 

Maxima [N/A]

Not integrable

Time = 0.16 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.32 \[ \int \frac {\sqrt [4]{-1+x^4} \left (-1+x^8\right )}{x^6 \left (1+x^8\right )} \, dx=\int { \frac {{\left (x^{8} - 1\right )} {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{{\left (x^{8} + 1\right )} x^{6}} \,d x } \] Input:

integrate((x^4-1)^(1/4)*(x^8-1)/x^6/(x^8+1),x, algorithm="maxima")
 

Output:

integrate((x^8 - 1)*(x^4 - 1)^(1/4)/((x^8 + 1)*x^6), x)
 

Giac [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.47 (sec) , antiderivative size = 290, normalized size of antiderivative = 3.72 \[ \int \frac {\sqrt [4]{-1+x^4} \left (-1+x^8\right )}{x^6 \left (1+x^8\right )} \, dx=\frac {1}{144115188075855872} i \, \left (8 i + 8\right )^{\frac {63}{4}} \log \left (\left (-281474976710656 i + 281474976710656\right )^{\frac {1}{4}} - \frac {4096 \, {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{144115188075855872} i \, \left (8 i + 8\right )^{\frac {63}{4}} \log \left (-\left (-281474976710656 i + 281474976710656\right )^{\frac {1}{4}} - \frac {4096 \, {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{x}\right ) - \frac {1}{536870912} \, \left (8 i + 8\right )^{\frac {31}{4}} \log \left (i \, \left (-16777216 i + 16777216\right )^{\frac {1}{4}} - \frac {64 \, {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{536870912} \, \left (8 i + 8\right )^{\frac {31}{4}} \log \left (-i \, \left (-16777216 i + 16777216\right )^{\frac {1}{4}} - \frac {64 \, {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{x}\right ) + \frac {{\left (x^{4} - 1\right )}^{\frac {1}{4}} {\left (\frac {1}{x^{4}} - 1\right )}}{5 \, x} - \frac {i \, \left (8 i + 8\right )^{\frac {15}{4}} \log \left (\left (16777216 i + 16777216\right )^{\frac {1}{4}} - \frac {64 \, {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{x}\right )}{256 \, {\left (\sqrt {\sqrt {2} + 2} + i \, \sqrt {-\sqrt {2} + 2}\right )}^{7}} + \frac {\left (8 i + 8\right )^{\frac {15}{4}} \log \left (i \, \left (16777216 i + 16777216\right )^{\frac {1}{4}} - \frac {64 \, {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{x}\right )}{256 \, {\left (\sqrt {\sqrt {2} + 2} + i \, \sqrt {-\sqrt {2} + 2}\right )}^{7}} - \frac {\left (8 i + 8\right )^{\frac {15}{4}} \log \left (-i \, \left (16777216 i + 16777216\right )^{\frac {1}{4}} - \frac {64 \, {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{x}\right )}{256 \, {\left (\sqrt {\sqrt {2} + 2} + i \, \sqrt {-\sqrt {2} + 2}\right )}^{7}} + \frac {i \, \left (8 i + 8\right )^{\frac {15}{4}} \log \left (-\left (16777216 i + 16777216\right )^{\frac {1}{4}} - \frac {64 \, {\left (x^{4} - 1\right )}^{\frac {1}{4}}}{x}\right )}{256 \, {\left (\sqrt {\sqrt {2} + 2} + i \, \sqrt {-\sqrt {2} + 2}\right )}^{7}} \] Input:

integrate((x^4-1)^(1/4)*(x^8-1)/x^6/(x^8+1),x, algorithm="giac")
 

Output:

1/144115188075855872*I*(8*I + 8)^(63/4)*log((-281474976710656*I + 28147497 
6710656)^(1/4) - 4096*(x^4 - 1)^(1/4)/x) - 1/144115188075855872*I*(8*I + 8 
)^(63/4)*log(-(-281474976710656*I + 281474976710656)^(1/4) - 4096*(x^4 - 1 
)^(1/4)/x) - 1/536870912*(8*I + 8)^(31/4)*log(I*(-16777216*I + 16777216)^( 
1/4) - 64*(x^4 - 1)^(1/4)/x) + 1/536870912*(8*I + 8)^(31/4)*log(-I*(-16777 
216*I + 16777216)^(1/4) - 64*(x^4 - 1)^(1/4)/x) + 1/5*(x^4 - 1)^(1/4)*(1/x 
^4 - 1)/x - 1/256*I*(8*I + 8)^(15/4)*log((16777216*I + 16777216)^(1/4) - 6 
4*(x^4 - 1)^(1/4)/x)/(sqrt(sqrt(2) + 2) + I*sqrt(-sqrt(2) + 2))^7 + 1/256* 
(8*I + 8)^(15/4)*log(I*(16777216*I + 16777216)^(1/4) - 64*(x^4 - 1)^(1/4)/ 
x)/(sqrt(sqrt(2) + 2) + I*sqrt(-sqrt(2) + 2))^7 - 1/256*(8*I + 8)^(15/4)*l 
og(-I*(16777216*I + 16777216)^(1/4) - 64*(x^4 - 1)^(1/4)/x)/(sqrt(sqrt(2) 
+ 2) + I*sqrt(-sqrt(2) + 2))^7 + 1/256*I*(8*I + 8)^(15/4)*log(-(16777216*I 
 + 16777216)^(1/4) - 64*(x^4 - 1)^(1/4)/x)/(sqrt(sqrt(2) + 2) + I*sqrt(-sq 
rt(2) + 2))^7
 

Mupad [N/A]

Not integrable

Time = 8.49 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.32 \[ \int \frac {\sqrt [4]{-1+x^4} \left (-1+x^8\right )}{x^6 \left (1+x^8\right )} \, dx=\int \frac {{\left (x^4-1\right )}^{1/4}\,\left (x^8-1\right )}{x^6\,\left (x^8+1\right )} \,d x \] Input:

int(((x^4 - 1)^(1/4)*(x^8 - 1))/(x^6*(x^8 + 1)),x)
 

Output:

int(((x^4 - 1)^(1/4)*(x^8 - 1))/(x^6*(x^8 + 1)), x)
 

Reduce [N/A]

Not integrable

Time = 0.21 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.64 \[ \int \frac {\sqrt [4]{-1+x^4} \left (-1+x^8\right )}{x^6 \left (1+x^8\right )} \, dx=\frac {\left (x^{4}-1\right )^{\frac {1}{4}} x^{4}-\left (x^{4}-1\right )^{\frac {1}{4}}-10 \left (\int \frac {\left (x^{4}-1\right )^{\frac {1}{4}}}{x^{14}+x^{6}}d x \right ) x^{5}}{5 x^{5}} \] Input:

int((x^4-1)^(1/4)*(x^8-1)/x^6/(x^8+1),x)
 

Output:

((x**4 - 1)**(1/4)*x**4 - (x**4 - 1)**(1/4) - 10*int((x**4 - 1)**(1/4)/(x* 
*14 + x**6),x)*x**5)/(5*x**5)