\(\int \frac {\sqrt [4]{-x^3+x^4}}{-1-2 x+x^2} \, dx\) [1165]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [B] (verified)
Maple [N/A] (verified)
Fricas [C] (verification not implemented)
Sympy [N/A]
Maxima [N/A]
Giac [N/A]
Mupad [N/A]
Reduce [N/A]

Optimal result

Integrand size = 24, antiderivative size = 86 \[ \int \frac {\sqrt [4]{-x^3+x^4}}{-1-2 x+x^2} \, dx=-2 \arctan \left (\frac {x}{\sqrt [4]{-x^3+x^4}}\right )+2 \text {arctanh}\left (\frac {x}{\sqrt [4]{-x^3+x^4}}\right )+\frac {1}{2} \text {RootSum}\left [2-4 \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-\log (x)+\log \left (\sqrt [4]{-x^3+x^4}-x \text {$\#$1}\right )}{\text {$\#$1}^3}\&\right ] \] Output:

Unintegrable
 

Mathematica [A] (warning: unable to verify)

Time = 0.02 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.20 \[ \int \frac {\sqrt [4]{-x^3+x^4}}{-1-2 x+x^2} \, dx=\frac {(-1+x)^{3/4} x^{9/4} \left (-4 \arctan \left (\frac {1}{\sqrt [4]{\frac {-1+x}{x}}}\right )+4 \text {arctanh}\left (\frac {1}{\sqrt [4]{\frac {-1+x}{x}}}\right )+\text {RootSum}\left [2-4 \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-\log \left (\sqrt [4]{x}\right )+\log \left (\sqrt [4]{-1+x}-\sqrt [4]{x} \text {$\#$1}\right )}{\text {$\#$1}^3}\&\right ]\right )}{2 \left ((-1+x) x^3\right )^{3/4}} \] Input:

Integrate[(-x^3 + x^4)^(1/4)/(-1 - 2*x + x^2),x]
 

Output:

((-1 + x)^(3/4)*x^(9/4)*(-4*ArcTan[((-1 + x)/x)^(-1/4)] + 4*ArcTanh[((-1 + 
 x)/x)^(-1/4)] + RootSum[2 - 4*#1^4 + #1^8 & , (-Log[x^(1/4)] + Log[(-1 + 
x)^(1/4) - x^(1/4)*#1])/#1^3 & ]))/(2*((-1 + x)*x^3)^(3/4))
 

Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(410\) vs. \(2(86)=172\).

Time = 1.16 (sec) , antiderivative size = 410, normalized size of antiderivative = 4.77, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {2467, 25, 1202, 25, 73, 770, 756, 216, 219, 2035, 7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [4]{x^4-x^3}}{x^2-2 x-1} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [4]{x^4-x^3} \int -\frac {\sqrt [4]{x-1} x^{3/4}}{-x^2+2 x+1}dx}{\sqrt [4]{x-1} x^{3/4}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [4]{x^4-x^3} \int \frac {\sqrt [4]{x-1} x^{3/4}}{-x^2+2 x+1}dx}{\sqrt [4]{x-1} x^{3/4}}\)

\(\Big \downarrow \) 1202

\(\displaystyle -\frac {\sqrt [4]{x^4-x^3} \left (-\int -\frac {x+1}{(x-1)^{3/4} \sqrt [4]{x} \left (-x^2+2 x+1\right )}dx-\int \frac {1}{(x-1)^{3/4} \sqrt [4]{x}}dx\right )}{\sqrt [4]{x-1} x^{3/4}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [4]{x^4-x^3} \left (\int \frac {x+1}{(x-1)^{3/4} \sqrt [4]{x} \left (-x^2+2 x+1\right )}dx-\int \frac {1}{(x-1)^{3/4} \sqrt [4]{x}}dx\right )}{\sqrt [4]{x-1} x^{3/4}}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {\sqrt [4]{x^4-x^3} \left (\int \frac {x+1}{(x-1)^{3/4} \sqrt [4]{x} \left (-x^2+2 x+1\right )}dx-4 \int \frac {1}{\sqrt [4]{x}}d\sqrt [4]{x-1}\right )}{\sqrt [4]{x-1} x^{3/4}}\)

\(\Big \downarrow \) 770

\(\displaystyle -\frac {\sqrt [4]{x^4-x^3} \left (\int \frac {x+1}{(x-1)^{3/4} \sqrt [4]{x} \left (-x^2+2 x+1\right )}dx-4 \int \frac {1}{2-x}d\frac {\sqrt [4]{x-1}}{\sqrt [4]{x}}\right )}{\sqrt [4]{x-1} x^{3/4}}\)

\(\Big \downarrow \) 756

\(\displaystyle -\frac {\sqrt [4]{x^4-x^3} \left (\int \frac {x+1}{(x-1)^{3/4} \sqrt [4]{x} \left (-x^2+2 x+1\right )}dx-4 \left (\frac {1}{2} \int \frac {1}{1-\sqrt {x-1}}d\frac {\sqrt [4]{x-1}}{\sqrt [4]{x}}+\frac {1}{2} \int \frac {1}{\sqrt {x-1}+1}d\frac {\sqrt [4]{x-1}}{\sqrt [4]{x}}\right )\right )}{\sqrt [4]{x-1} x^{3/4}}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {\sqrt [4]{x^4-x^3} \left (\int \frac {x+1}{(x-1)^{3/4} \sqrt [4]{x} \left (-x^2+2 x+1\right )}dx-4 \left (\frac {1}{2} \int \frac {1}{1-\sqrt {x-1}}d\frac {\sqrt [4]{x-1}}{\sqrt [4]{x}}+\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x-1}}{\sqrt [4]{x}}\right )\right )\right )}{\sqrt [4]{x-1} x^{3/4}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\sqrt [4]{x^4-x^3} \left (\int \frac {x+1}{(x-1)^{3/4} \sqrt [4]{x} \left (-x^2+2 x+1\right )}dx-4 \left (\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x-1}}{\sqrt [4]{x}}\right )+\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{x-1}}{\sqrt [4]{x}}\right )\right )\right )}{\sqrt [4]{x-1} x^{3/4}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {\sqrt [4]{x^4-x^3} \left (4 \int \frac {\sqrt {x} (x+1)}{(x-1)^{3/4} \left (-x^2+2 x+1\right )}d\sqrt [4]{x}-4 \left (\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x-1}}{\sqrt [4]{x}}\right )+\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{x-1}}{\sqrt [4]{x}}\right )\right )\right )}{\sqrt [4]{x-1} x^{3/4}}\)

\(\Big \downarrow \) 7279

\(\displaystyle -\frac {\sqrt [4]{x^4-x^3} \left (4 \int \left (-\frac {x^{3/2}}{(x-1)^{3/4} \left (x^2-2 x-1\right )}-\frac {\sqrt {x}}{(x-1)^{3/4} \left (x^2-2 x-1\right )}\right )d\sqrt [4]{x}-4 \left (\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x-1}}{\sqrt [4]{x}}\right )+\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{x-1}}{\sqrt [4]{x}}\right )\right )\right )}{\sqrt [4]{x-1} x^{3/4}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\sqrt [4]{x^4-x^3} \left (4 \left (-\frac {1}{8} \sqrt [4]{10+7 \sqrt {2}} \arctan \left (\frac {\sqrt [4]{2-\sqrt {2}} \sqrt [4]{x}}{\sqrt [4]{x-1}}\right )-\frac {1}{8} \sqrt [4]{2-\sqrt {2}} \arctan \left (\frac {\sqrt [4]{2-\sqrt {2}} \sqrt [4]{x}}{\sqrt [4]{x-1}}\right )-\frac {1}{8} \sqrt [4]{2+\sqrt {2}} \arctan \left (\frac {\sqrt [4]{2+\sqrt {2}} \sqrt [4]{x}}{\sqrt [4]{x-1}}\right )+\frac {1}{8} \sqrt [4]{10-7 \sqrt {2}} \arctan \left (\frac {\sqrt [4]{2+\sqrt {2}} \sqrt [4]{x}}{\sqrt [4]{x-1}}\right )+\frac {1}{8} \sqrt [4]{10+7 \sqrt {2}} \text {arctanh}\left (\frac {\sqrt [4]{2-\sqrt {2}} \sqrt [4]{x}}{\sqrt [4]{x-1}}\right )+\frac {1}{8} \sqrt [4]{2-\sqrt {2}} \text {arctanh}\left (\frac {\sqrt [4]{2-\sqrt {2}} \sqrt [4]{x}}{\sqrt [4]{x-1}}\right )+\frac {1}{8} \sqrt [4]{2+\sqrt {2}} \text {arctanh}\left (\frac {\sqrt [4]{2+\sqrt {2}} \sqrt [4]{x}}{\sqrt [4]{x-1}}\right )-\frac {1}{8} \sqrt [4]{10-7 \sqrt {2}} \text {arctanh}\left (\frac {\sqrt [4]{2+\sqrt {2}} \sqrt [4]{x}}{\sqrt [4]{x-1}}\right )\right )-4 \left (\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x-1}}{\sqrt [4]{x}}\right )+\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{x-1}}{\sqrt [4]{x}}\right )\right )\right )}{\sqrt [4]{x-1} x^{3/4}}\)

Input:

Int[(-x^3 + x^4)^(1/4)/(-1 - 2*x + x^2),x]
 

Output:

-(((-x^3 + x^4)^(1/4)*(-4*(ArcTan[(-1 + x)^(1/4)/x^(1/4)]/2 + ArcTanh[(-1 
+ x)^(1/4)/x^(1/4)]/2) + 4*(-1/8*((2 - Sqrt[2])^(1/4)*ArcTan[((2 - Sqrt[2] 
)^(1/4)*x^(1/4))/(-1 + x)^(1/4)]) - ((10 + 7*Sqrt[2])^(1/4)*ArcTan[((2 - S 
qrt[2])^(1/4)*x^(1/4))/(-1 + x)^(1/4)])/8 + ((10 - 7*Sqrt[2])^(1/4)*ArcTan 
[((2 + Sqrt[2])^(1/4)*x^(1/4))/(-1 + x)^(1/4)])/8 - ((2 + Sqrt[2])^(1/4)*A 
rcTan[((2 + Sqrt[2])^(1/4)*x^(1/4))/(-1 + x)^(1/4)])/8 + ((2 - Sqrt[2])^(1 
/4)*ArcTanh[((2 - Sqrt[2])^(1/4)*x^(1/4))/(-1 + x)^(1/4)])/8 + ((10 + 7*Sq 
rt[2])^(1/4)*ArcTanh[((2 - Sqrt[2])^(1/4)*x^(1/4))/(-1 + x)^(1/4)])/8 - (( 
10 - 7*Sqrt[2])^(1/4)*ArcTanh[((2 + Sqrt[2])^(1/4)*x^(1/4))/(-1 + x)^(1/4) 
])/8 + ((2 + Sqrt[2])^(1/4)*ArcTanh[((2 + Sqrt[2])^(1/4)*x^(1/4))/(-1 + x) 
^(1/4)])/8)))/((-1 + x)^(1/4)*x^(3/4)))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 770
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^(p + 1/n)   Subst[In 
t[1/(1 - b*x^n)^(p + 1/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, 
 b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p + 1 
/n]
 

rule 1202
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_.) + (b_.)*(x 
_) + (c_.)*(x_)^2), x_Symbol] :> Simp[e*(g/c)   Int[(d + e*x)^(m - 1)*(f + 
g*x)^(n - 1), x], x] + Simp[1/c   Int[Simp[c*d*f - a*e*g + (c*e*f + c*d*g - 
 b*e*g)*x, x]*(d + e*x)^(m - 1)*((f + g*x)^(n - 1)/(a + b*x + c*x^2)), x], 
x] /; FreeQ[{a, b, c, d, e, f, g}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] && 
GtQ[m, 0] && GtQ[n, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
Maple [N/A] (verified)

Time = 11.88 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.08

method result size
pseudoelliptic \(2 \arctan \left (\frac {\left (x^{3} \left (-1+x \right )\right )^{\frac {1}{4}}}{x}\right )+\ln \left (\frac {x +\left (x^{3} \left (-1+x \right )\right )^{\frac {1}{4}}}{x}\right )+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-4 \textit {\_Z}^{4}+2\right )}{\sum }\frac {\ln \left (\frac {-\textit {\_R} x +\left (x^{3} \left (-1+x \right )\right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R}^{3}}\right )}{2}-\ln \left (\frac {\left (x^{3} \left (-1+x \right )\right )^{\frac {1}{4}}-x}{x}\right )\) \(93\)
trager \(\text {Expression too large to display}\) \(3973\)

Input:

int((x^4-x^3)^(1/4)/(x^2-2*x-1),x,method=_RETURNVERBOSE)
 

Output:

2*arctan((x^3*(-1+x))^(1/4)/x)+ln((x+(x^3*(-1+x))^(1/4))/x)+1/2*sum(ln((-_ 
R*x+(x^3*(-1+x))^(1/4))/x)/_R^3,_R=RootOf(_Z^8-4*_Z^4+2))-ln(((x^3*(-1+x)) 
^(1/4)-x)/x)
 

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.11 (sec) , antiderivative size = 536, normalized size of antiderivative = 6.23 \[ \int \frac {\sqrt [4]{-x^3+x^4}}{-1-2 x+x^2} \, dx =\text {Too large to display} \] Input:

integrate((x^4-x^3)^(1/4)/(x^2-2*x-1),x, algorithm="fricas")
 

Output:

1/2*sqrt(1/2)*sqrt(-sqrt(7*sqrt(2) + 10))*log((sqrt(1/2)*(sqrt(2)*x - 2*x) 
*sqrt(-sqrt(7*sqrt(2) + 10)) + (x^4 - x^3)^(1/4))/x) - 1/2*sqrt(1/2)*sqrt( 
-sqrt(7*sqrt(2) + 10))*log(-(sqrt(1/2)*(sqrt(2)*x - 2*x)*sqrt(-sqrt(7*sqrt 
(2) + 10)) - (x^4 - x^3)^(1/4))/x) - 1/2*sqrt(1/2)*sqrt(-sqrt(-7*sqrt(2) + 
 10))*log((sqrt(1/2)*(sqrt(2)*x + 2*x)*sqrt(-sqrt(-7*sqrt(2) + 10)) + (x^4 
 - x^3)^(1/4))/x) + 1/2*sqrt(1/2)*sqrt(-sqrt(-7*sqrt(2) + 10))*log(-(sqrt( 
1/2)*(sqrt(2)*x + 2*x)*sqrt(-sqrt(-7*sqrt(2) + 10)) - (x^4 - x^3)^(1/4))/x 
) + 1/2*sqrt(1/2)*(7*sqrt(2) + 10)^(1/4)*log((sqrt(1/2)*(sqrt(2)*x - 2*x)* 
(7*sqrt(2) + 10)^(1/4) + (x^4 - x^3)^(1/4))/x) - 1/2*sqrt(1/2)*(7*sqrt(2) 
+ 10)^(1/4)*log(-(sqrt(1/2)*(sqrt(2)*x - 2*x)*(7*sqrt(2) + 10)^(1/4) - (x^ 
4 - x^3)^(1/4))/x) - 1/2*sqrt(1/2)*(-7*sqrt(2) + 10)^(1/4)*log((sqrt(1/2)* 
(sqrt(2)*x + 2*x)*(-7*sqrt(2) + 10)^(1/4) + (x^4 - x^3)^(1/4))/x) + 1/2*sq 
rt(1/2)*(-7*sqrt(2) + 10)^(1/4)*log(-(sqrt(1/2)*(sqrt(2)*x + 2*x)*(-7*sqrt 
(2) + 10)^(1/4) - (x^4 - x^3)^(1/4))/x) - 2*arctan((x^4 - x^3)^(3/4)/(x^3 
- x^2)) + log((x + (x^4 - x^3)^(1/4))/x) - log(-(x - (x^4 - x^3)^(1/4))/x)
 

Sympy [N/A]

Not integrable

Time = 0.49 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.22 \[ \int \frac {\sqrt [4]{-x^3+x^4}}{-1-2 x+x^2} \, dx=\int \frac {\sqrt [4]{x^{3} \left (x - 1\right )}}{x^{2} - 2 x - 1}\, dx \] Input:

integrate((x**4-x**3)**(1/4)/(x**2-2*x-1),x)
 

Output:

Integral((x**3*(x - 1))**(1/4)/(x**2 - 2*x - 1), x)
 

Maxima [N/A]

Not integrable

Time = 0.08 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.28 \[ \int \frac {\sqrt [4]{-x^3+x^4}}{-1-2 x+x^2} \, dx=\int { \frac {{\left (x^{4} - x^{3}\right )}^{\frac {1}{4}}}{x^{2} - 2 \, x - 1} \,d x } \] Input:

integrate((x^4-x^3)^(1/4)/(x^2-2*x-1),x, algorithm="maxima")
 

Output:

integrate((x^4 - x^3)^(1/4)/(x^2 - 2*x - 1), x)
 

Giac [N/A]

Not integrable

Time = 0.32 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.28 \[ \int \frac {\sqrt [4]{-x^3+x^4}}{-1-2 x+x^2} \, dx=\int { \frac {{\left (x^{4} - x^{3}\right )}^{\frac {1}{4}}}{x^{2} - 2 \, x - 1} \,d x } \] Input:

integrate((x^4-x^3)^(1/4)/(x^2-2*x-1),x, algorithm="giac")
 

Output:

integrate((x^4 - x^3)^(1/4)/(x^2 - 2*x - 1), x)
 

Mupad [N/A]

Not integrable

Time = 0.00 (sec) , antiderivative size = 28, normalized size of antiderivative = 0.33 \[ \int \frac {\sqrt [4]{-x^3+x^4}}{-1-2 x+x^2} \, dx=-\int \frac {{\left (x^4-x^3\right )}^{1/4}}{-x^2+2\,x+1} \,d x \] Input:

int(-(x^4 - x^3)^(1/4)/(2*x - x^2 + 1),x)
 

Output:

-int((x^4 - x^3)^(1/4)/(2*x - x^2 + 1), x)
 

Reduce [N/A]

Not integrable

Time = 0.21 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.24 \[ \int \frac {\sqrt [4]{-x^3+x^4}}{-1-2 x+x^2} \, dx=\int \frac {x^{\frac {3}{4}} \left (x -1\right )^{\frac {1}{4}}}{x^{2}-2 x -1}d x \] Input:

int((x^4-x^3)^(1/4)/(x^2-2*x-1),x)
 

Output:

int((x**(3/4)*(x - 1)**(1/4))/(x**2 - 2*x - 1),x)