\(\int \frac {(-2 k+(-1+k) (1+k) x+2 k x^2) (1+2 k x+k^2 x^2)}{((1-x^2) (1-k^2 x^2))^{3/4} (-1+d+(1+3 d) k x+(1+3 d k^2) x^2+k (-1+d k^2) x^3)} \, dx\) [1298]

Optimal result
Mathematica [F]
Rubi [F]
Maple [F]
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 91, antiderivative size = 94 \[ \int \frac {\left (-2 k+(-1+k) (1+k) x+2 k x^2\right ) \left (1+2 k x+k^2 x^2\right )}{\left (\left (1-x^2\right ) \left (1-k^2 x^2\right )\right )^{3/4} \left (-1+d+(1+3 d) k x+\left (1+3 d k^2\right ) x^2+k \left (-1+d k^2\right ) x^3\right )} \, dx=-\frac {\arctan \left (\frac {\sqrt [4]{d}+\sqrt [4]{d} k x}{\sqrt [4]{1+\left (-1-k^2\right ) x^2+k^2 x^4}}\right )}{d^{3/4}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{d}+\sqrt [4]{d} k x}{\sqrt [4]{1+\left (-1-k^2\right ) x^2+k^2 x^4}}\right )}{d^{3/4}} \] Output:

-arctan((d^(1/4)+d^(1/4)*k*x)/(1+(-k^2-1)*x^2+k^2*x^4)^(1/4))/d^(3/4)+arct 
anh((d^(1/4)+d^(1/4)*k*x)/(1+(-k^2-1)*x^2+k^2*x^4)^(1/4))/d^(3/4)
 

Mathematica [F]

\[ \int \frac {\left (-2 k+(-1+k) (1+k) x+2 k x^2\right ) \left (1+2 k x+k^2 x^2\right )}{\left (\left (1-x^2\right ) \left (1-k^2 x^2\right )\right )^{3/4} \left (-1+d+(1+3 d) k x+\left (1+3 d k^2\right ) x^2+k \left (-1+d k^2\right ) x^3\right )} \, dx=\int \frac {\left (-2 k+(-1+k) (1+k) x+2 k x^2\right ) \left (1+2 k x+k^2 x^2\right )}{\left (\left (1-x^2\right ) \left (1-k^2 x^2\right )\right )^{3/4} \left (-1+d+(1+3 d) k x+\left (1+3 d k^2\right ) x^2+k \left (-1+d k^2\right ) x^3\right )} \, dx \] Input:

Integrate[((-2*k + (-1 + k)*(1 + k)*x + 2*k*x^2)*(1 + 2*k*x + k^2*x^2))/(( 
(1 - x^2)*(1 - k^2*x^2))^(3/4)*(-1 + d + (1 + 3*d)*k*x + (1 + 3*d*k^2)*x^2 
 + k*(-1 + d*k^2)*x^3)),x]
 

Output:

Integrate[((-2*k + (-1 + k)*(1 + k)*x + 2*k*x^2)*(1 + 2*k*x + k^2*x^2))/(( 
(1 - x^2)*(1 - k^2*x^2))^(3/4)*(-1 + d + (1 + 3*d)*k*x + (1 + 3*d*k^2)*x^2 
 + k*(-1 + d*k^2)*x^3)), x]
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (2 k x^2+(k-1) (k+1) x-2 k\right ) \left (k^2 x^2+2 k x+1\right )}{\left (\left (1-x^2\right ) \left (1-k^2 x^2\right )\right )^{3/4} \left (k x^3 \left (d k^2-1\right )+x^2 \left (3 d k^2+1\right )+(3 d+1) k x+d-1\right )} \, dx\)

\(\Big \downarrow \) 2006

\(\displaystyle \int \frac {(k x+1)^2 \left (2 k x^2+(k-1) (k+1) x-2 k\right )}{\left (\left (1-x^2\right ) \left (1-k^2 x^2\right )\right )^{3/4} \left (k x^3 \left (d k^2-1\right )+x^2 \left (3 d k^2+1\right )+(3 d+1) k x+d-1\right )}dx\)

\(\Big \downarrow \) 2048

\(\displaystyle \int \frac {(k x+1)^2 \left (2 k x^2+(k-1) (k+1) x-2 k\right )}{\left (k^2 x^4+\left (-k^2-1\right ) x^2+1\right )^{3/4} \left (k x^3 \left (d k^2-1\right )+x^2 \left (3 d k^2+1\right )+(3 d+1) k x+d-1\right )}dx\)

\(\Big \downarrow \) 7292

\(\displaystyle \int \frac {(k x+1)^2 \left (-2 k x^2+(1-k) (k+1) x+2 k\right )}{\left (k^2 x^4+\left (-k^2-1\right ) x^2+1\right )^{3/4} \left (k x^3 \left (1-d k^2\right )-x^2 \left (3 d k^2+1\right )-(3 d+1) k x-d+1\right )}dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (\frac {x \left (-6 d^2 \left (1-k^2\right ) k^4-d \left (-k^4+14 k^2+19\right ) k^2-k^4+1\right )+k \left (-3 d^2 \left (1-k^2\right ) k^2-d \left (k^4+2 k^2+5\right )+k^2+7\right )-k x^2 \left (-3 d^2 k^6+3 d^2 k^4+3 (8 d+1) k^2+5\right )}{\left (d k^2-1\right )^2 \left (k^2 x^4+\left (-k^2-1\right ) x^2+1\right )^{3/4} \left (k x^3 \left (1-d k^2\right )-x^2 \left (3 d k^2+1\right )-(3 d+1) k x-d+1\right )}-\frac {2 k^2 x}{\left (1-d k^2\right ) \left (k^2 x^4+\left (-k^2-1\right ) x^2+1\right )^{3/4}}-\frac {k \left (-d k^4+(3 d+1) k^2+5\right )}{\left (1-d k^2\right )^2 \left (k^2 x^4+\left (-k^2-1\right ) x^2+1\right )^{3/4}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {k \left (-3 d^2 \left (1-k^2\right ) k^2-d \left (k^4+2 k^2+5\right )+k^2+7\right ) \int \frac {1}{\left (k \left (1-d k^2\right ) x^3-\left (3 d k^2+1\right ) x^2-(3 d+1) k x-d+1\right ) \left (k^2 x^4+\left (-k^2-1\right ) x^2+1\right )^{3/4}}dx}{\left (1-d k^2\right )^2}+\frac {\left (-6 d^2 \left (1-k^2\right ) k^4-d \left (-k^4+14 k^2+19\right ) k^2-k^4+1\right ) \int \frac {x}{\left (k \left (1-d k^2\right ) x^3-\left (3 d k^2+1\right ) x^2-(3 d+1) k x-d+1\right ) \left (k^2 x^4+\left (-k^2-1\right ) x^2+1\right )^{3/4}}dx}{\left (1-d k^2\right )^2}-\frac {k \left (-3 d^2 k^6+3 d^2 k^4+3 (8 d+1) k^2+5\right ) \int \frac {x^2}{\left (k \left (1-d k^2\right ) x^3-\left (3 d k^2+1\right ) x^2-(3 d+1) k x-d+1\right ) \left (k^2 x^4+\left (-k^2-1\right ) x^2+1\right )^{3/4}}dx}{\left (1-d k^2\right )^2}+\frac {\sqrt {2} \sqrt {k^2-1} k^{3/2} \sqrt {\left (2 k^2 x^2-k^2-1\right )^2} \sqrt {\frac {\left (k^2 \left (1-2 x^2\right )+1\right )^2}{\left (1-k^2\right )^2 \left (1-\frac {2 k \sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )}}{1-k^2}\right )^2}} \left (1-\frac {2 k \sqrt {\left (1-x^2\right ) \left (1-k^2 x^2\right )}}{1-k^2}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {2} \sqrt {k} \sqrt [4]{\left (1-x^2\right ) \left (1-k^2 x^2\right )}}{\sqrt {k^2-1}}\right ),\frac {1}{2}\right )}{\left (1-d k^2\right ) \left (-2 k^2 x^2+k^2+1\right ) \sqrt {\left (-\left (k^2 \left (1-2 x^2\right )\right )-1\right )^2}}-\frac {k x \left (-d k^4+(3 d+1) k^2+5\right ) \left (\frac {1-x^2}{1-k^2 x^2}\right )^{3/4} \left (1-k^2 x^2\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {3}{2},\frac {\left (1-k^2\right ) x^2}{1-k^2 x^2}\right )}{\left (1-d k^2\right )^2 \left (k^2 x^4-\left (k^2+1\right ) x^2+1\right )^{3/4}}\)

Input:

Int[((-2*k + (-1 + k)*(1 + k)*x + 2*k*x^2)*(1 + 2*k*x + k^2*x^2))/(((1 - x 
^2)*(1 - k^2*x^2))^(3/4)*(-1 + d + (1 + 3*d)*k*x + (1 + 3*d*k^2)*x^2 + k*( 
-1 + d*k^2)*x^3)),x]
 

Output:

$Aborted
 
Maple [F]

\[\int \frac {\left (-2 k +\left (-1+k \right ) \left (1+k \right ) x +2 k \,x^{2}\right ) \left (k^{2} x^{2}+2 k x +1\right )}{{\left (\left (-x^{2}+1\right ) \left (-k^{2} x^{2}+1\right )\right )}^{\frac {3}{4}} \left (-1+d +\left (1+3 d \right ) k x +\left (3 d \,k^{2}+1\right ) x^{2}+k \left (d \,k^{2}-1\right ) x^{3}\right )}d x\]

Input:

int((-2*k+(-1+k)*(1+k)*x+2*k*x^2)*(k^2*x^2+2*k*x+1)/((-x^2+1)*(-k^2*x^2+1) 
)^(3/4)/(-1+d+(1+3*d)*k*x+(3*d*k^2+1)*x^2+k*(d*k^2-1)*x^3),x)
 

Output:

int((-2*k+(-1+k)*(1+k)*x+2*k*x^2)*(k^2*x^2+2*k*x+1)/((-x^2+1)*(-k^2*x^2+1) 
)^(3/4)/(-1+d+(1+3*d)*k*x+(3*d*k^2+1)*x^2+k*(d*k^2-1)*x^3),x)
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\left (-2 k+(-1+k) (1+k) x+2 k x^2\right ) \left (1+2 k x+k^2 x^2\right )}{\left (\left (1-x^2\right ) \left (1-k^2 x^2\right )\right )^{3/4} \left (-1+d+(1+3 d) k x+\left (1+3 d k^2\right ) x^2+k \left (-1+d k^2\right ) x^3\right )} \, dx=\text {Timed out} \] Input:

integrate((-2*k+(-1+k)*(1+k)*x+2*k*x^2)*(k^2*x^2+2*k*x+1)/((-x^2+1)*(-k^2* 
x^2+1))^(3/4)/(-1+d+(1+3*d)*k*x+(3*d*k^2+1)*x^2+k*(d*k^2-1)*x^3),x, algori 
thm="fricas")
                                                                                    
                                                                                    
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (-2 k+(-1+k) (1+k) x+2 k x^2\right ) \left (1+2 k x+k^2 x^2\right )}{\left (\left (1-x^2\right ) \left (1-k^2 x^2\right )\right )^{3/4} \left (-1+d+(1+3 d) k x+\left (1+3 d k^2\right ) x^2+k \left (-1+d k^2\right ) x^3\right )} \, dx=\text {Timed out} \] Input:

integrate((-2*k+(-1+k)*(1+k)*x+2*k*x**2)*(k**2*x**2+2*k*x+1)/((-x**2+1)*(- 
k**2*x**2+1))**(3/4)/(-1+d+(1+3*d)*k*x+(3*d*k**2+1)*x**2+k*(d*k**2-1)*x**3 
),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\left (-2 k+(-1+k) (1+k) x+2 k x^2\right ) \left (1+2 k x+k^2 x^2\right )}{\left (\left (1-x^2\right ) \left (1-k^2 x^2\right )\right )^{3/4} \left (-1+d+(1+3 d) k x+\left (1+3 d k^2\right ) x^2+k \left (-1+d k^2\right ) x^3\right )} \, dx=\int { \frac {{\left (k^{2} x^{2} + 2 \, k x + 1\right )} {\left ({\left (k + 1\right )} {\left (k - 1\right )} x + 2 \, k x^{2} - 2 \, k\right )}}{{\left ({\left (d k^{2} - 1\right )} k x^{3} + {\left (3 \, d + 1\right )} k x + {\left (3 \, d k^{2} + 1\right )} x^{2} + d - 1\right )} \left ({\left (k^{2} x^{2} - 1\right )} {\left (x^{2} - 1\right )}\right )^{\frac {3}{4}}} \,d x } \] Input:

integrate((-2*k+(-1+k)*(1+k)*x+2*k*x^2)*(k^2*x^2+2*k*x+1)/((-x^2+1)*(-k^2* 
x^2+1))^(3/4)/(-1+d+(1+3*d)*k*x+(3*d*k^2+1)*x^2+k*(d*k^2-1)*x^3),x, algori 
thm="maxima")
 

Output:

integrate((k^2*x^2 + 2*k*x + 1)*((k + 1)*(k - 1)*x + 2*k*x^2 - 2*k)/(((d*k 
^2 - 1)*k*x^3 + (3*d + 1)*k*x + (3*d*k^2 + 1)*x^2 + d - 1)*((k^2*x^2 - 1)* 
(x^2 - 1))^(3/4)), x)
 

Giac [F]

\[ \int \frac {\left (-2 k+(-1+k) (1+k) x+2 k x^2\right ) \left (1+2 k x+k^2 x^2\right )}{\left (\left (1-x^2\right ) \left (1-k^2 x^2\right )\right )^{3/4} \left (-1+d+(1+3 d) k x+\left (1+3 d k^2\right ) x^2+k \left (-1+d k^2\right ) x^3\right )} \, dx=\int { \frac {{\left (k^{2} x^{2} + 2 \, k x + 1\right )} {\left ({\left (k + 1\right )} {\left (k - 1\right )} x + 2 \, k x^{2} - 2 \, k\right )}}{{\left ({\left (d k^{2} - 1\right )} k x^{3} + {\left (3 \, d + 1\right )} k x + {\left (3 \, d k^{2} + 1\right )} x^{2} + d - 1\right )} \left ({\left (k^{2} x^{2} - 1\right )} {\left (x^{2} - 1\right )}\right )^{\frac {3}{4}}} \,d x } \] Input:

integrate((-2*k+(-1+k)*(1+k)*x+2*k*x^2)*(k^2*x^2+2*k*x+1)/((-x^2+1)*(-k^2* 
x^2+1))^(3/4)/(-1+d+(1+3*d)*k*x+(3*d*k^2+1)*x^2+k*(d*k^2-1)*x^3),x, algori 
thm="giac")
 

Output:

integrate((k^2*x^2 + 2*k*x + 1)*((k + 1)*(k - 1)*x + 2*k*x^2 - 2*k)/(((d*k 
^2 - 1)*k*x^3 + (3*d + 1)*k*x + (3*d*k^2 + 1)*x^2 + d - 1)*((k^2*x^2 - 1)* 
(x^2 - 1))^(3/4)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (-2 k+(-1+k) (1+k) x+2 k x^2\right ) \left (1+2 k x+k^2 x^2\right )}{\left (\left (1-x^2\right ) \left (1-k^2 x^2\right )\right )^{3/4} \left (-1+d+(1+3 d) k x+\left (1+3 d k^2\right ) x^2+k \left (-1+d k^2\right ) x^3\right )} \, dx=\int \frac {\left (2\,k\,x^2+\left (k-1\right )\,\left (k+1\right )\,x-2\,k\right )\,\left (k^2\,x^2+2\,k\,x+1\right )}{{\left (\left (x^2-1\right )\,\left (k^2\,x^2-1\right )\right )}^{3/4}\,\left (k\,\left (d\,k^2-1\right )\,x^3+\left (3\,d\,k^2+1\right )\,x^2+k\,\left (3\,d+1\right )\,x+d-1\right )} \,d x \] Input:

int(((2*k*x^2 - 2*k + x*(k - 1)*(k + 1))*(k^2*x^2 + 2*k*x + 1))/(((x^2 - 1 
)*(k^2*x^2 - 1))^(3/4)*(d + x^2*(3*d*k^2 + 1) + k*x*(3*d + 1) + k*x^3*(d*k 
^2 - 1) - 1)),x)
 

Output:

int(((2*k*x^2 - 2*k + x*(k - 1)*(k + 1))*(k^2*x^2 + 2*k*x + 1))/(((x^2 - 1 
)*(k^2*x^2 - 1))^(3/4)*(d + x^2*(3*d*k^2 + 1) + k*x*(3*d + 1) + k*x^3*(d*k 
^2 - 1) - 1)), x)
 

Reduce [F]

\[ \int \frac {\left (-2 k+(-1+k) (1+k) x+2 k x^2\right ) \left (1+2 k x+k^2 x^2\right )}{\left (\left (1-x^2\right ) \left (1-k^2 x^2\right )\right )^{3/4} \left (-1+d+(1+3 d) k x+\left (1+3 d k^2\right ) x^2+k \left (-1+d k^2\right ) x^3\right )} \, dx =\text {Too large to display} \] Input:

int((-2*k+(-1+k)*(1+k)*x+2*k*x^2)*(k^2*x^2+2*k*x+1)/((-x^2+1)*(-k^2*x^2+1) 
)^(3/4)/(-1+d+(1+3*d)*k*x+(3*d*k^2+1)*x^2+k*(d*k^2-1)*x^3),x)
 

Output:

2*int(x**4/((k**2*x**4 - k**2*x**2 - x**2 + 1)**(3/4)*d*k**3*x**3 + 3*(k** 
2*x**4 - k**2*x**2 - x**2 + 1)**(3/4)*d*k**2*x**2 + 3*(k**2*x**4 - k**2*x* 
*2 - x**2 + 1)**(3/4)*d*k*x + (k**2*x**4 - k**2*x**2 - x**2 + 1)**(3/4)*d 
- (k**2*x**4 - k**2*x**2 - x**2 + 1)**(3/4)*k*x**3 + (k**2*x**4 - k**2*x** 
2 - x**2 + 1)**(3/4)*k*x + (k**2*x**4 - k**2*x**2 - x**2 + 1)**(3/4)*x**2 
- (k**2*x**4 - k**2*x**2 - x**2 + 1)**(3/4)),x)*k**3 + int(x**3/((k**2*x** 
4 - k**2*x**2 - x**2 + 1)**(3/4)*d*k**3*x**3 + 3*(k**2*x**4 - k**2*x**2 - 
x**2 + 1)**(3/4)*d*k**2*x**2 + 3*(k**2*x**4 - k**2*x**2 - x**2 + 1)**(3/4) 
*d*k*x + (k**2*x**4 - k**2*x**2 - x**2 + 1)**(3/4)*d - (k**2*x**4 - k**2*x 
**2 - x**2 + 1)**(3/4)*k*x**3 + (k**2*x**4 - k**2*x**2 - x**2 + 1)**(3/4)* 
k*x + (k**2*x**4 - k**2*x**2 - x**2 + 1)**(3/4)*x**2 - (k**2*x**4 - k**2*x 
**2 - x**2 + 1)**(3/4)),x)*k**4 + 3*int(x**3/((k**2*x**4 - k**2*x**2 - x** 
2 + 1)**(3/4)*d*k**3*x**3 + 3*(k**2*x**4 - k**2*x**2 - x**2 + 1)**(3/4)*d* 
k**2*x**2 + 3*(k**2*x**4 - k**2*x**2 - x**2 + 1)**(3/4)*d*k*x + (k**2*x**4 
 - k**2*x**2 - x**2 + 1)**(3/4)*d - (k**2*x**4 - k**2*x**2 - x**2 + 1)**(3 
/4)*k*x**3 + (k**2*x**4 - k**2*x**2 - x**2 + 1)**(3/4)*k*x + (k**2*x**4 - 
k**2*x**2 - x**2 + 1)**(3/4)*x**2 - (k**2*x**4 - k**2*x**2 - x**2 + 1)**(3 
/4)),x)*k**2 - 3*int(x/((k**2*x**4 - k**2*x**2 - x**2 + 1)**(3/4)*d*k**3*x 
**3 + 3*(k**2*x**4 - k**2*x**2 - x**2 + 1)**(3/4)*d*k**2*x**2 + 3*(k**2*x* 
*4 - k**2*x**2 - x**2 + 1)**(3/4)*d*k*x + (k**2*x**4 - k**2*x**2 - x**2...