\(\int \frac {x^4}{(1+x^4)^2 \sqrt [4]{x^2+x^4}} \, dx\) [1748]

Optimal result
Mathematica [A] (verified)
Rubi [F]
Maple [N/A] (verified)
Fricas [C] (verification not implemented)
Sympy [N/A]
Maxima [N/A]
Giac [C] (verification not implemented)
Mupad [N/A]
Reduce [N/A]

Optimal result

Integrand size = 22, antiderivative size = 118 \[ \int \frac {x^4}{\left (1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\frac {\left (-1+x^2\right ) \left (x^2+x^4\right )^{3/4}}{8 x \left (1+x^4\right )}+\frac {1}{64} \text {RootSum}\left [2-2 \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-2 \log (x)+2 \log \left (\sqrt [4]{x^2+x^4}-x \text {$\#$1}\right )+\log (x) \text {$\#$1}^4-\log \left (\sqrt [4]{x^2+x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4}{-\text {$\#$1}+\text {$\#$1}^5}\&\right ] \] Output:

Unintegrable
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.32 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.17 \[ \int \frac {x^4}{\left (1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\frac {16 x \left (-1+x^4\right )+\sqrt {x} \sqrt [4]{1+x^2} \left (1+x^4\right ) \text {RootSum}\left [2-2 \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-2 \log (x)+4 \log \left (\sqrt [4]{1+x^2}-\sqrt {x} \text {$\#$1}\right )+\log (x) \text {$\#$1}^4-2 \log \left (\sqrt [4]{1+x^2}-\sqrt {x} \text {$\#$1}\right ) \text {$\#$1}^4}{-\text {$\#$1}+\text {$\#$1}^5}\&\right ]}{128 \left (1+x^4\right ) \sqrt [4]{x^2+x^4}} \] Input:

Integrate[x^4/((1 + x^4)^2*(x^2 + x^4)^(1/4)),x]
 

Output:

(16*x*(-1 + x^4) + Sqrt[x]*(1 + x^2)^(1/4)*(1 + x^4)*RootSum[2 - 2*#1^4 + 
#1^8 & , (-2*Log[x] + 4*Log[(1 + x^2)^(1/4) - Sqrt[x]*#1] + Log[x]*#1^4 - 
2*Log[(1 + x^2)^(1/4) - Sqrt[x]*#1]*#1^4)/(-#1 + #1^5) & ])/(128*(1 + x^4) 
*(x^2 + x^4)^(1/4))
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4}{\left (x^4+1\right )^2 \sqrt [4]{x^4+x^2}} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt [4]{x^2+1} \int \frac {x^{7/2}}{\sqrt [4]{x^2+1} \left (x^4+1\right )^2}dx}{\sqrt [4]{x^4+x^2}}\)

\(\Big \downarrow \) 1593

\(\displaystyle \frac {2 \sqrt {x} \sqrt [4]{x^2+1} \int \frac {x^4}{\sqrt [4]{x^2+1} \left (x^4+1\right )^2}d\sqrt {x}}{\sqrt [4]{x^4+x^2}}\)

\(\Big \downarrow \) 1888

\(\displaystyle \frac {2 \sqrt {x} \sqrt [4]{x^2+1} \int \frac {x^4}{\sqrt [4]{x^2+1} \left (x^4+1\right )^2}d\sqrt {x}}{\sqrt [4]{x^4+x^2}}\)

Input:

Int[x^4/((1 + x^4)^2*(x^2 + x^4)^(1/4)),x]
 

Output:

$Aborted
 
Maple [N/A] (verified)

Time = 84.50 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.28

method result size
pseudoelliptic \(\frac {-\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-2 \textit {\_Z}^{4}+2\right )}{\sum }\frac {\left (\textit {\_R}^{4}-2\right ) \ln \left (\frac {-\textit {\_R} x +\left (x^{2} \left (x^{2}+1\right )\right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R}^{5}-\textit {\_R}}\right ) x^{5}+8 \left (x^{2} \left (x^{2}+1\right )\right )^{\frac {3}{4}} x^{2}-8 \left (x^{2} \left (x^{2}+1\right )\right )^{\frac {3}{4}}-\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-2 \textit {\_Z}^{4}+2\right )}{\sum }\frac {\left (\textit {\_R}^{4}-2\right ) \ln \left (\frac {-\textit {\_R} x +\left (x^{2} \left (x^{2}+1\right )\right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R}^{5}-\textit {\_R}}\right ) x}{64 x \left (x^{4}+1\right )}\) \(151\)
trager \(\text {Expression too large to display}\) \(2553\)
risch \(\text {Expression too large to display}\) \(2560\)

Input:

int(x^4/(x^4+1)^2/(x^4+x^2)^(1/4),x,method=_RETURNVERBOSE)
 

Output:

1/64*(-sum((_R^4-2)*ln((-_R*x+(x^2*(x^2+1))^(1/4))/x)/(_R^5-_R),_R=RootOf( 
_Z^8-2*_Z^4+2))*x^5+8*(x^2*(x^2+1))^(3/4)*x^2-8*(x^2*(x^2+1))^(3/4)-sum((_ 
R^4-2)*ln((-_R*x+(x^2*(x^2+1))^(1/4))/x)/(_R^5-_R),_R=RootOf(_Z^8-2*_Z^4+2 
))*x)/x/(x^4+1)
 

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 3.57 (sec) , antiderivative size = 934, normalized size of antiderivative = 7.92 \[ \int \frac {x^4}{\left (1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\text {Too large to display} \] Input:

integrate(x^4/(x^4+1)^2/(x^4+x^2)^(1/4),x, algorithm="fricas")
 

Output:

-1/64*(sqrt(1/2)*(x^5 + x)*sqrt(-sqrt(1/2*I - 1/2))*log((sqrt(1/2)*((5*I + 
 15)*x^5 - (16*I - 12)*x^3 - 4*sqrt(1/2*I - 1/2)*sqrt(x^4 + x^2)*(-(4*I - 
3)*x^3 - (3*I + 4)*x) - (7*I + 1)*x)*sqrt(-sqrt(1/2*I - 1/2)) - 2*sqrt(1/2 
*I - 1/2)*(x^4 + x^2)^(1/4)*((I - 7)*x^4 + (7*I + 1)*x^2) - 2*(x^4 + x^2)^ 
(3/4)*((3*I + 4)*x^2 - 4*I + 3))/(x^5 + x)) - sqrt(1/2)*(x^5 + x)*sqrt(-sq 
rt(1/2*I - 1/2))*log((sqrt(1/2)*(-(5*I + 15)*x^5 + (16*I - 12)*x^3 - 4*sqr 
t(1/2*I - 1/2)*sqrt(x^4 + x^2)*((4*I - 3)*x^3 + (3*I + 4)*x) + (7*I + 1)*x 
)*sqrt(-sqrt(1/2*I - 1/2)) - 2*sqrt(1/2*I - 1/2)*(x^4 + x^2)^(1/4)*((I - 7 
)*x^4 + (7*I + 1)*x^2) - 2*(x^4 + x^2)^(3/4)*((3*I + 4)*x^2 - 4*I + 3))/(x 
^5 + x)) + sqrt(1/2)*(x^5 + x)*sqrt(-sqrt(-1/2*I - 1/2))*log((sqrt(1/2)*(- 
(5*I - 15)*x^5 + (16*I + 12)*x^3 - 4*sqrt(-1/2*I - 1/2)*sqrt(x^4 + x^2)*(( 
4*I + 3)*x^3 + (3*I - 4)*x) + (7*I - 1)*x)*sqrt(-sqrt(-1/2*I - 1/2)) - 2*s 
qrt(-1/2*I - 1/2)*(x^4 + x^2)^(1/4)*(-(I + 7)*x^4 - (7*I - 1)*x^2) - 2*(x^ 
4 + x^2)^(3/4)*(-(3*I - 4)*x^2 + 4*I + 3))/(x^5 + x)) - sqrt(1/2)*(x^5 + x 
)*sqrt(-sqrt(-1/2*I - 1/2))*log((sqrt(1/2)*((5*I - 15)*x^5 - (16*I + 12)*x 
^3 - 4*sqrt(-1/2*I - 1/2)*sqrt(x^4 + x^2)*(-(4*I + 3)*x^3 - (3*I - 4)*x) - 
 (7*I - 1)*x)*sqrt(-sqrt(-1/2*I - 1/2)) - 2*sqrt(-1/2*I - 1/2)*(x^4 + x^2) 
^(1/4)*(-(I + 7)*x^4 - (7*I - 1)*x^2) - 2*(x^4 + x^2)^(3/4)*(-(3*I - 4)*x^ 
2 + 4*I + 3))/(x^5 + x)) + sqrt(1/2)*(1/2*I - 1/2)^(1/4)*(x^5 + x)*log((sq 
rt(1/2)*(1/2*I - 1/2)^(1/4)*((5*I + 15)*x^5 - (16*I - 12)*x^3 - 4*sqrt(...
 

Sympy [N/A]

Not integrable

Time = 1.39 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.19 \[ \int \frac {x^4}{\left (1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\int \frac {x^{4}}{\sqrt [4]{x^{2} \left (x^{2} + 1\right )} \left (x^{4} + 1\right )^{2}}\, dx \] Input:

integrate(x**4/(x**4+1)**2/(x**4+x**2)**(1/4),x)
 

Output:

Integral(x**4/((x**2*(x**2 + 1))**(1/4)*(x**4 + 1)**2), x)
 

Maxima [N/A]

Not integrable

Time = 0.20 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.68 \[ \int \frac {x^4}{\left (1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\int { \frac {x^{4}}{{\left (x^{4} + x^{2}\right )}^{\frac {1}{4}} {\left (x^{4} + 1\right )}^{2}} \,d x } \] Input:

integrate(x^4/(x^4+1)^2/(x^4+x^2)^(1/4),x, algorithm="maxima")
 

Output:

2/21*(4*x^5 + x^3 - 3*x)*x^(7/2)/((x^8 + 2*x^4 + 1)*(x^2 + 1)^(1/4)) - int 
egrate(16/21*(4*x^4 + x^2 - 3)*x^(7/2)/((x^12 + 3*x^8 + 3*x^4 + 1)*(x^2 + 
1)^(1/4)), x)
 

Giac [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.29 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.64 \[ \int \frac {x^4}{\left (1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\text {Too large to display} \] Input:

integrate(x^4/(x^4+1)^2/(x^4+x^2)^(1/4),x, algorithm="giac")
 

Output:

-8*I*(-1/34359738368*I - 1/34359738368)^(1/4)*log((43934705024835902175884 
16511412091659052438592091715462012456613878747637374499873358438170023330 
91518546963929054774914375807231981865204004737810631363657728*I + 4393470 
50248359021758841651141209165905243859209171546201245661387874763737449987 
33584381700233309151854696392905477491437580723198186520400473781063136365 
7728)^(1/4)*(1/x^2 + 1)^(1/4) + 5444517870735015415413993718908291383296*I 
) + 8*I*(-1/34359738368*I - 1/34359738368)^(1/4)*log(-(4393470502483590217 
58841651141209165905243859209171546201245661387874763737449987335843817002 
333091518546963929054774914375807231981865204004737810631363657728*I + 439 
34705024835902175884165114120916590524385920917154620124566138787476373744 
99873358438170023330915185469639290547749143758072319818652040047378106313 
63657728)^(1/4)*(1/x^2 + 1)^(1/4) + 54445178707350154154139937189082913832 
96*I) - 1/2*(-1/524288*I - 1/524288)^(1/4)*log(I*(248661618204893321077691 
124073410420050228075398673858720231988446579748506266687766528*I + 248661 
61820489332107769112407341042005022807539867385872023198844657974850626668 
7766528)^(1/4)*(1/x^2 + 1)^(1/4) - 4722366482869645213696*I) + 1/2*(-1/524 
288*I - 1/524288)^(1/4)*log(-I*(248661618204893321077691124073410420050228 
075398673858720231988446579748506266687766528*I + 248661618204893321077691 
124073410420050228075398673858720231988446579748506266687766528)^(1/4)*(1/ 
x^2 + 1)^(1/4) - 4722366482869645213696*I) + 1/2*I*(1/524288*I - 1/5242...
 

Mupad [N/A]

Not integrable

Time = 7.97 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.19 \[ \int \frac {x^4}{\left (1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\int \frac {x^4}{{\left (x^4+x^2\right )}^{1/4}\,{\left (x^4+1\right )}^2} \,d x \] Input:

int(x^4/((x^2 + x^4)^(1/4)*(x^4 + 1)^2),x)
 

Output:

int(x^4/((x^2 + x^4)^(1/4)*(x^4 + 1)^2), x)
 

Reduce [N/A]

Not integrable

Time = 0.49 (sec) , antiderivative size = 574, normalized size of antiderivative = 4.86 \[ \int \frac {x^4}{\left (1+x^4\right )^2 \sqrt [4]{x^2+x^4}} \, dx=\frac {-32 \sqrt {x}\, \left (x^{2}+1\right )^{\frac {5}{4}} x^{4}-8 \sqrt {x}\, \left (x^{2}+1\right )^{\frac {5}{4}} x^{2}-29 \sqrt {x}\, \left (x^{2}+1\right )^{\frac {5}{4}}-117 \sqrt {x}\, \left (x^{2}+1\right )^{\frac {1}{4}} x^{2}-117 \sqrt {x}\, \left (x^{2}+1\right )^{\frac {1}{4}}+73 \sqrt {x^{2}+1}\, \left (\int \frac {\left (x^{2}+1\right )^{\frac {3}{4}}}{\sqrt {x}\, x^{12}+2 \sqrt {x}\, x^{10}+3 \sqrt {x}\, x^{8}+4 \sqrt {x}\, x^{6}+3 \sqrt {x}\, x^{4}+2 \sqrt {x}\, x^{2}+\sqrt {x}}d x \right ) x^{6}+73 \sqrt {x^{2}+1}\, \left (\int \frac {\left (x^{2}+1\right )^{\frac {3}{4}}}{\sqrt {x}\, x^{12}+2 \sqrt {x}\, x^{10}+3 \sqrt {x}\, x^{8}+4 \sqrt {x}\, x^{6}+3 \sqrt {x}\, x^{4}+2 \sqrt {x}\, x^{2}+\sqrt {x}}d x \right ) x^{4}+73 \sqrt {x^{2}+1}\, \left (\int \frac {\left (x^{2}+1\right )^{\frac {3}{4}}}{\sqrt {x}\, x^{12}+2 \sqrt {x}\, x^{10}+3 \sqrt {x}\, x^{8}+4 \sqrt {x}\, x^{6}+3 \sqrt {x}\, x^{4}+2 \sqrt {x}\, x^{2}+\sqrt {x}}d x \right ) x^{2}+73 \sqrt {x^{2}+1}\, \left (\int \frac {\left (x^{2}+1\right )^{\frac {3}{4}}}{\sqrt {x}\, x^{12}+2 \sqrt {x}\, x^{10}+3 \sqrt {x}\, x^{8}+4 \sqrt {x}\, x^{6}+3 \sqrt {x}\, x^{4}+2 \sqrt {x}\, x^{2}+\sqrt {x}}d x \right )+137 \sqrt {x^{2}+1}\, \left (\int \frac {\sqrt {x}\, \left (x^{2}+1\right )^{\frac {3}{4}} x}{x^{12}+2 x^{10}+3 x^{8}+4 x^{6}+3 x^{4}+2 x^{2}+1}d x \right ) x^{6}+137 \sqrt {x^{2}+1}\, \left (\int \frac {\sqrt {x}\, \left (x^{2}+1\right )^{\frac {3}{4}} x}{x^{12}+2 x^{10}+3 x^{8}+4 x^{6}+3 x^{4}+2 x^{2}+1}d x \right ) x^{4}+137 \sqrt {x^{2}+1}\, \left (\int \frac {\sqrt {x}\, \left (x^{2}+1\right )^{\frac {3}{4}} x}{x^{12}+2 x^{10}+3 x^{8}+4 x^{6}+3 x^{4}+2 x^{2}+1}d x \right ) x^{2}+137 \sqrt {x^{2}+1}\, \left (\int \frac {\sqrt {x}\, \left (x^{2}+1\right )^{\frac {3}{4}} x}{x^{12}+2 x^{10}+3 x^{8}+4 x^{6}+3 x^{4}+2 x^{2}+1}d x \right )}{351 \sqrt {x^{2}+1}\, \left (x^{6}+x^{4}+x^{2}+1\right )} \] Input:

int(x^4/(x^4+1)^2/(x^4+x^2)^(1/4),x)
 

Output:

( - 32*sqrt(x)*(x**2 + 1)**(5/4)*x**4 - 8*sqrt(x)*(x**2 + 1)**(5/4)*x**2 - 
 29*sqrt(x)*(x**2 + 1)**(5/4) - 117*sqrt(x)*(x**2 + 1)**(1/4)*x**2 - 117*s 
qrt(x)*(x**2 + 1)**(1/4) + 73*sqrt(x**2 + 1)*int((x**2 + 1)**(3/4)/(sqrt(x 
)*x**12 + 2*sqrt(x)*x**10 + 3*sqrt(x)*x**8 + 4*sqrt(x)*x**6 + 3*sqrt(x)*x* 
*4 + 2*sqrt(x)*x**2 + sqrt(x)),x)*x**6 + 73*sqrt(x**2 + 1)*int((x**2 + 1)* 
*(3/4)/(sqrt(x)*x**12 + 2*sqrt(x)*x**10 + 3*sqrt(x)*x**8 + 4*sqrt(x)*x**6 
+ 3*sqrt(x)*x**4 + 2*sqrt(x)*x**2 + sqrt(x)),x)*x**4 + 73*sqrt(x**2 + 1)*i 
nt((x**2 + 1)**(3/4)/(sqrt(x)*x**12 + 2*sqrt(x)*x**10 + 3*sqrt(x)*x**8 + 4 
*sqrt(x)*x**6 + 3*sqrt(x)*x**4 + 2*sqrt(x)*x**2 + sqrt(x)),x)*x**2 + 73*sq 
rt(x**2 + 1)*int((x**2 + 1)**(3/4)/(sqrt(x)*x**12 + 2*sqrt(x)*x**10 + 3*sq 
rt(x)*x**8 + 4*sqrt(x)*x**6 + 3*sqrt(x)*x**4 + 2*sqrt(x)*x**2 + sqrt(x)),x 
) + 137*sqrt(x**2 + 1)*int((sqrt(x)*(x**2 + 1)**(3/4)*x)/(x**12 + 2*x**10 
+ 3*x**8 + 4*x**6 + 3*x**4 + 2*x**2 + 1),x)*x**6 + 137*sqrt(x**2 + 1)*int( 
(sqrt(x)*(x**2 + 1)**(3/4)*x)/(x**12 + 2*x**10 + 3*x**8 + 4*x**6 + 3*x**4 
+ 2*x**2 + 1),x)*x**4 + 137*sqrt(x**2 + 1)*int((sqrt(x)*(x**2 + 1)**(3/4)* 
x)/(x**12 + 2*x**10 + 3*x**8 + 4*x**6 + 3*x**4 + 2*x**2 + 1),x)*x**2 + 137 
*sqrt(x**2 + 1)*int((sqrt(x)*(x**2 + 1)**(3/4)*x)/(x**12 + 2*x**10 + 3*x** 
8 + 4*x**6 + 3*x**4 + 2*x**2 + 1),x))/(351*sqrt(x**2 + 1)*(x**6 + x**4 + x 
**2 + 1))