\(\int \frac {-b+2 a x^4}{(b+a x^4) \sqrt [4]{b x^2+a x^4}} \, dx\) [1751]

Optimal result
Mathematica [A] (verified)
Rubi [B] (verified)
Maple [N/A] (verified)
Fricas [F(-1)]
Sympy [N/A]
Maxima [N/A]
Giac [N/A]
Mupad [N/A]
Reduce [N/A]

Optimal result

Integrand size = 35, antiderivative size = 118 \[ \int \frac {-b+2 a x^4}{\left (b+a x^4\right ) \sqrt [4]{b x^2+a x^4}} \, dx=\frac {2 \arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b x^2+a x^4}}\right )}{\sqrt [4]{a}}+\frac {2 \text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b x^2+a x^4}}\right )}{\sqrt [4]{a}}+\frac {3}{4} \text {RootSum}\left [a^2+a b-2 a \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-\log (x)+\log \left (\sqrt [4]{b x^2+a x^4}-x \text {$\#$1}\right )}{\text {$\#$1}}\&\right ] \] Output:

Unintegrable
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 1.06 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.31 \[ \int \frac {-b+2 a x^4}{\left (b+a x^4\right ) \sqrt [4]{b x^2+a x^4}} \, dx=\frac {\sqrt {x} \sqrt [4]{b+a x^2} \left (8 \left (\arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b+a x^2}}\right )+\text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b+a x^2}}\right )\right )+3 \sqrt [4]{a} \text {RootSum}\left [a^2+a b-2 a \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-\log \left (\sqrt {x}\right )+\log \left (\sqrt [4]{b+a x^2}-\sqrt {x} \text {$\#$1}\right )}{\text {$\#$1}}\&\right ]\right )}{4 \sqrt [4]{a} \sqrt [4]{x^2 \left (b+a x^2\right )}} \] Input:

Integrate[(-b + 2*a*x^4)/((b + a*x^4)*(b*x^2 + a*x^4)^(1/4)),x]
 

Output:

(Sqrt[x]*(b + a*x^2)^(1/4)*(8*(ArcTan[(a^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)] 
 + ArcTanh[(a^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)]) + 3*a^(1/4)*RootSum[a^2 + 
 a*b - 2*a*#1^4 + #1^8 & , (-Log[Sqrt[x]] + Log[(b + a*x^2)^(1/4) - Sqrt[x 
]*#1])/#1 & ]))/(4*a^(1/4)*(x^2*(b + a*x^2))^(1/4))
 

Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(338\) vs. \(2(118)=236\).

Time = 1.14 (sec) , antiderivative size = 338, normalized size of antiderivative = 2.86, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2467, 25, 2035, 7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {2 a x^4-b}{\left (a x^4+b\right ) \sqrt [4]{a x^4+b x^2}} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt [4]{a x^2+b} \int -\frac {b-2 a x^4}{\sqrt {x} \sqrt [4]{a x^2+b} \left (a x^4+b\right )}dx}{\sqrt [4]{a x^4+b x^2}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {x} \sqrt [4]{a x^2+b} \int \frac {b-2 a x^4}{\sqrt {x} \sqrt [4]{a x^2+b} \left (a x^4+b\right )}dx}{\sqrt [4]{a x^4+b x^2}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {2 \sqrt {x} \sqrt [4]{a x^2+b} \int \frac {b-2 a x^4}{\sqrt [4]{a x^2+b} \left (a x^4+b\right )}d\sqrt {x}}{\sqrt [4]{a x^4+b x^2}}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {2 \sqrt {x} \sqrt [4]{a x^2+b} \int \left (\frac {3 b}{\sqrt [4]{a x^2+b} \left (a x^4+b\right )}-\frac {2}{\sqrt [4]{a x^2+b}}\right )d\sqrt {x}}{\sqrt [4]{a x^4+b x^2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 \sqrt {x} \sqrt [4]{a x^2+b} \left (-\frac {\arctan \left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{\sqrt [4]{a}}+\frac {3 \arctan \left (\frac {\sqrt {x} \sqrt [4]{a-\sqrt {-a} \sqrt {b}}}{\sqrt [4]{a x^2+b}}\right )}{4 \sqrt [4]{a-\sqrt {-a} \sqrt {b}}}+\frac {3 \arctan \left (\frac {\sqrt {x} \sqrt [4]{\sqrt {-a} \sqrt {b}+a}}{\sqrt [4]{a x^2+b}}\right )}{4 \sqrt [4]{\sqrt {-a} \sqrt {b}+a}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt {x}}{\sqrt [4]{a x^2+b}}\right )}{\sqrt [4]{a}}+\frac {3 \text {arctanh}\left (\frac {\sqrt {x} \sqrt [4]{a-\sqrt {-a} \sqrt {b}}}{\sqrt [4]{a x^2+b}}\right )}{4 \sqrt [4]{a-\sqrt {-a} \sqrt {b}}}+\frac {3 \text {arctanh}\left (\frac {\sqrt {x} \sqrt [4]{\sqrt {-a} \sqrt {b}+a}}{\sqrt [4]{a x^2+b}}\right )}{4 \sqrt [4]{\sqrt {-a} \sqrt {b}+a}}\right )}{\sqrt [4]{a x^4+b x^2}}\)

Input:

Int[(-b + 2*a*x^4)/((b + a*x^4)*(b*x^2 + a*x^4)^(1/4)),x]
 

Output:

(-2*Sqrt[x]*(b + a*x^2)^(1/4)*(-(ArcTan[(a^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4 
)]/a^(1/4)) + (3*ArcTan[((a - Sqrt[-a]*Sqrt[b])^(1/4)*Sqrt[x])/(b + a*x^2) 
^(1/4)])/(4*(a - Sqrt[-a]*Sqrt[b])^(1/4)) + (3*ArcTan[((a + Sqrt[-a]*Sqrt[ 
b])^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)])/(4*(a + Sqrt[-a]*Sqrt[b])^(1/4)) - 
ArcTanh[(a^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)]/a^(1/4) + (3*ArcTanh[((a - Sq 
rt[-a]*Sqrt[b])^(1/4)*Sqrt[x])/(b + a*x^2)^(1/4)])/(4*(a - Sqrt[-a]*Sqrt[b 
])^(1/4)) + (3*ArcTanh[((a + Sqrt[-a]*Sqrt[b])^(1/4)*Sqrt[x])/(b + a*x^2)^ 
(1/4)])/(4*(a + Sqrt[-a]*Sqrt[b])^(1/4))))/(b*x^2 + a*x^4)^(1/4)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
Maple [N/A] (verified)

Time = 0.42 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.08

method result size
pseudoelliptic \(\frac {3 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-2 a \,\textit {\_Z}^{4}+a^{2}+a b \right )}{\sum }\frac {\ln \left (\frac {-\textit {\_R} x +\left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}{x}\right )}{\textit {\_R}}\right ) a^{\frac {1}{4}}-8 \arctan \left (\frac {\left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}{a^{\frac {1}{4}} x}\right )+4 \ln \left (\frac {a^{\frac {1}{4}} x +\left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}{-a^{\frac {1}{4}} x +\left (x^{2} \left (a \,x^{2}+b \right )\right )^{\frac {1}{4}}}\right )}{4 a^{\frac {1}{4}}}\) \(127\)

Input:

int((2*a*x^4-b)/(a*x^4+b)/(a*x^4+b*x^2)^(1/4),x,method=_RETURNVERBOSE)
 

Output:

1/4*(3*sum(ln((-_R*x+(x^2*(a*x^2+b))^(1/4))/x)/_R,_R=RootOf(_Z^8-2*_Z^4*a+ 
a^2+a*b))*a^(1/4)-8*arctan(1/a^(1/4)/x*(x^2*(a*x^2+b))^(1/4))+4*ln((a^(1/4 
)*x+(x^2*(a*x^2+b))^(1/4))/(-a^(1/4)*x+(x^2*(a*x^2+b))^(1/4))))/a^(1/4)
 

Fricas [F(-1)]

Timed out. \[ \int \frac {-b+2 a x^4}{\left (b+a x^4\right ) \sqrt [4]{b x^2+a x^4}} \, dx=\text {Timed out} \] Input:

integrate((2*a*x^4-b)/(a*x^4+b)/(a*x^4+b*x^2)^(1/4),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [N/A]

Not integrable

Time = 5.88 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.25 \[ \int \frac {-b+2 a x^4}{\left (b+a x^4\right ) \sqrt [4]{b x^2+a x^4}} \, dx=\int \frac {2 a x^{4} - b}{\sqrt [4]{x^{2} \left (a x^{2} + b\right )} \left (a x^{4} + b\right )}\, dx \] Input:

integrate((2*a*x**4-b)/(a*x**4+b)/(a*x**4+b*x**2)**(1/4),x)
 

Output:

Integral((2*a*x**4 - b)/((x**2*(a*x**2 + b))**(1/4)*(a*x**4 + b)), x)
 

Maxima [N/A]

Not integrable

Time = 0.11 (sec) , antiderivative size = 35, normalized size of antiderivative = 0.30 \[ \int \frac {-b+2 a x^4}{\left (b+a x^4\right ) \sqrt [4]{b x^2+a x^4}} \, dx=\int { \frac {2 \, a x^{4} - b}{{\left (a x^{4} + b x^{2}\right )}^{\frac {1}{4}} {\left (a x^{4} + b\right )}} \,d x } \] Input:

integrate((2*a*x^4-b)/(a*x^4+b)/(a*x^4+b*x^2)^(1/4),x, algorithm="maxima")
 

Output:

integrate((2*a*x^4 - b)/((a*x^4 + b*x^2)^(1/4)*(a*x^4 + b)), x)
 

Giac [N/A]

Not integrable

Time = 2.07 (sec) , antiderivative size = 35, normalized size of antiderivative = 0.30 \[ \int \frac {-b+2 a x^4}{\left (b+a x^4\right ) \sqrt [4]{b x^2+a x^4}} \, dx=\int { \frac {2 \, a x^{4} - b}{{\left (a x^{4} + b x^{2}\right )}^{\frac {1}{4}} {\left (a x^{4} + b\right )}} \,d x } \] Input:

integrate((2*a*x^4-b)/(a*x^4+b)/(a*x^4+b*x^2)^(1/4),x, algorithm="giac")
 

Output:

integrate((2*a*x^4 - b)/((a*x^4 + b*x^2)^(1/4)*(a*x^4 + b)), x)
 

Mupad [N/A]

Not integrable

Time = 8.00 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.29 \[ \int \frac {-b+2 a x^4}{\left (b+a x^4\right ) \sqrt [4]{b x^2+a x^4}} \, dx=\int -\frac {b-2\,a\,x^4}{\left (a\,x^4+b\right )\,{\left (a\,x^4+b\,x^2\right )}^{1/4}} \,d x \] Input:

int(-(b - 2*a*x^4)/((b + a*x^4)*(a*x^4 + b*x^2)^(1/4)),x)
 

Output:

int(-(b - 2*a*x^4)/((b + a*x^4)*(a*x^4 + b*x^2)^(1/4)), x)
 

Reduce [N/A]

Not integrable

Time = 2.31 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.48 \[ \int \frac {-b+2 a x^4}{\left (b+a x^4\right ) \sqrt [4]{b x^2+a x^4}} \, dx=\frac {2 \sqrt {x}\, \left (a \,x^{2}+b \right )^{\frac {5}{4}}+2 \sqrt {x}\, \left (a \,x^{2}+b \right )^{\frac {1}{4}} a \,x^{2}+2 \sqrt {x}\, \left (a \,x^{2}+b \right )^{\frac {1}{4}} b -3 \sqrt {a \,x^{2}+b}\, \left (\int \frac {\sqrt {x}\, \left (a \,x^{2}+b \right )^{\frac {3}{4}}}{a^{2} x^{7}+a b \,x^{5}+a b \,x^{3}+b^{2} x}d x \right ) a b \,x^{2}-3 \sqrt {a \,x^{2}+b}\, \left (\int \frac {\sqrt {x}\, \left (a \,x^{2}+b \right )^{\frac {3}{4}}}{a^{2} x^{7}+a b \,x^{5}+a b \,x^{3}+b^{2} x}d x \right ) b^{2}}{\sqrt {a \,x^{2}+b}\, \left (a \,x^{2}+b \right )} \] Input:

int((2*a*x^4-b)/(a*x^4+b)/(a*x^4+b*x^2)^(1/4),x)
 

Output:

(2*sqrt(x)*(a*x**2 + b)**(5/4) + 2*sqrt(x)*(a*x**2 + b)**(1/4)*a*x**2 + 2* 
sqrt(x)*(a*x**2 + b)**(1/4)*b - 3*sqrt(a*x**2 + b)*int((sqrt(x)*(a*x**2 + 
b)**(3/4))/(a**2*x**7 + a*b*x**5 + a*b*x**3 + b**2*x),x)*a*b*x**2 - 3*sqrt 
(a*x**2 + b)*int((sqrt(x)*(a*x**2 + b)**(3/4))/(a**2*x**7 + a*b*x**5 + a*b 
*x**3 + b**2*x),x)*b**2)/(sqrt(a*x**2 + b)*(a*x**2 + b))